首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
/ Many of the aquatic and terrestrial ecosystems of the Pacific Northwest United States have been simplified and degraded in part through past land-management activities. Recent listings of fishes under the Endangered Species Act and major new initiatives for the restoration of forest health have precipitated contentious debate among managers and conservation interests in the region. Because aggressive management activities proposed for forest restoration may directly affect watershed processes and functions, the goals of aquatic and terrestrial conservation and restoration are generally viewed as in conflict. The inextricable links in ecological processes and functions, however, suggest the two perspectives should really represent elements of the same problem; that of conserving and restoring more functional landscapes. We used recent information on the status and distribution of forest and fish communities to classify river subbasins across the region and explore the potential conflict and opportunity for a more integrated view of management. Our classification indicated that there are often common trends in terrestrial and aquatic communities that highlight areas of potential convergence in management goals. Regions where patterns diverge may emphasize the need for particular care and investment in detailed risk analyses. Our spatially explicit classification of subbasin conditions provides a mechanism for progress in three areas that we think is necessary for a more integrated approach to management: (1) communication among disciplines; (2) effective prioritization of limited conservation and restoration resources; and (3) a framework for experimentation and demonstration of commitment and untested restoration techniques.  相似文献   

2.
A strategy for management of giant sequoia groves is formulated using a conceptual framework for ecosystem management recently developed by Region Five of the USDA Forest Service. The framework includes physical, biological, and social dimensions. Environmental indicators and reference variability for key ecosystem elements are discussed in this paper. The selected ecosystem elements include: 1) attitudes, beliefs, and values; 2) economics and subsistence; 3) stream channel morphology; 4) sediment; 5) water; 6) fire; 7) organic debris; and 8) vegetation mosaic. Recommendations are made for the attributes of environmental indicators that characterize these elements. These elements and associated indicators will define and control management activities for the protection, preservation, and restoration of national forest giant sequoia ecosystems.  相似文献   

3.
Lack of theoretical basis for predicting rate and pathways of recovery   总被引:1,自引:0,他引:1  
An inadequate basis for precisely predicting the outcome of lotic ecosystem recovery, whether due to unaided natural processes or management techniques or both, exists because: (1) the field of ecology has not yet matured as a rigorous predictive science; (2) the precise sequence of events, including climatic occurrences, affecting the recovery process may be unique events and thus rarely or never repeated; and (3) even when attempts are made to control the recolonization process through introduction of species, etc., the interaction of these species may not follow deterministic models. Although this symposium focuses on lotic ecosystems, such systems are influenced strongly by exports from the surrounding land mass and, under certain circumstances, this may be the overriding influence on the recovery process; therefore, unless the boundary conditions are determined realistically, the recovery process may not follow desirable pathways. Despite the lack of a robust theoretical support base for lotic ecosystem recovery, some remarkable and rapid recoveries have occurred to either a close approximation of the original condition or to a condition ecologically superior to the damaged condition. In some cases, the recovery was due entirely to natural processes and, in others, often followed relatively straightforward management practices. There is evidence indicating that lotic ecosystem restoration is both cost effective and likely to produce satisfying results relatively rapidly. It is both fortunate that this is the case, since society is likely to support such efforts when the results have been extraordinarily successful, and unfortunate since restoration ecology needs a predictive capability.  相似文献   

4.
5.
6.
The ecosystems of South Florida are unique in the world. The defining features of the natural Everglades (large spatial scale, temporal patterns of water storage and sheetflow, and low nutrient levels) historically allowed a mosaic of habitats with characteristic animals. Massive hydrological alterations have halved the Everglades, and ecological sustainability requires fundamental changes in management.The US Man and the Biosphere Human-Dominated Systems Directorate is conducting a case study of South Florida using ecosystem management as a framework for exploring options for mutually dependent sustainability of society and the environment. A new methodology was developed to specify sustainability goals, characterize human factors affecting the ecosystem, and conduct scenario/consequence analyses to examine ecological and societal implications. South Florida has sufficient water for urban, agricultural, and ecological needs, but most water drains to the sea through the system of canals; thus, the issue is not competition for resources but storage and management of water. The goal is to reestablish the natural system for water quantity, timing, and distribution over a sufficient area to restore the essence of the Everglades.The societal sustainability in the Everglades Agricultural Area (EAA) is at risk because of soil degradation, vulnerability of sugar price supports, policies affecting Cuban sugar imports, and political/economic forces aligned against sugar production. One scenario suggested using the EAA for water storage while under private sugar production, thereby linking sustainability of the ecological system with societal sustainability. Further analyses are needed, but the US MAB project suggests achieving ecological sustainability consistent with societal sustainability may be feasible.  相似文献   

7.
Applying Ecological Risk Principles to Watershed Assessment and Management   总被引:6,自引:0,他引:6  
Considerable progress in addressing point source (end of pipe) pollution problems has been made, but it is now recognized that further substantial environmental improvements depend on controlling nonpoint source pollution. A watershed approach is being used more frequently to address these problems because traditional regulatory approaches do not focus on nonpoint sources. The watershed approach is organized around the guiding principles of partnerships, geographic focus, and management based on sound science and data. This helps to focus efforts on the highest priority problems within hydrologically-defined geographic areas. Ecological risk assessment is a process to collect, organize, analyze, and present scientific information to improve decision making. The U.S. Environmental Protection Agency (EPA) sponsored three watershed assessments and found that integrating the watershed approach with ecological risk assessment increases the use of environmental monitoring and assessment data in decision making. This paper describes the basics of the watershed approach, the ecological risk assessment process, and how these two frameworks can be integrated. The three major principles of watershed ecological risk assessment found to be most useful for increasing the use of science in decision making are (1) using assessment endpoints and conceptual models, (2) holding regular interactions between scientists and managers, and (3) developing a focus for multiple stressor analysis. Examples are provided illustrating how these principles were implemented in these assessments.  相似文献   

8.
We applied the Theory of Planned Behavior to help understand the relationships between environmental beliefs, support for ecosystem restoration actions, and willingness to pay (WTP) for restoration and protection goals in the Hudson River estuary, New York State, USA. We conducted a mail survey with 3,000 randomly-chosen local residents of the Hudson River estuary in the fall of 1999. As hypothesized, the broad ecosystem restoration goals of the Hudson River Estuary Action Plan were more strongly supported than the corresponding specific implementation actions. We found that beliefs and past behavior were better explanatory variables than sociodemographic characteristics for explaining people's support for ecosystem restoration actions and WTP for restoration and protection goals. Because ecosystem restoration goals appear to be more generally acceptable than specific restoration actions, proponents of restoration programs should not become complacent about the need for active public outreach and involvement even if initial restoration program discussions have been low in controversy. Efforts to assess and foster support for ecosystem restoration should be targeted toward audiences identified on the basis of beliefs and past behaviors rather than on sociodemographic characteristics.  相似文献   

9.
In order to reconcile the need for conserving and improving neglected Mediterranean upland ecosystems with socio-economic advancement, new concepts of integrated landscape management are required. For this purpose a mode of a closely interwoven network of multiple land-use patterns is suggested, based on vegetation management and manipulation of the soil-plant-animal complex and on multi-purpose environmental landscaping and afforestation. The latter is essential for revegetation of denuded slopes and for fire protection and buffer zones, and is aimed at the creation of semi-natural, multi-layered forests, parks and woodlands. From these, highest overall multiple use benefits can be expected for environmental and watershed protection, resistance to fire hazard, biotic diversity and wildlife, recreation amenity., and plant and animal production.For optimization and dynamic land-use planning such relative values of multiple use benefits should be expressed in quantitative data and applied in dynamic planning of multiple use strategies, which could be tested first in combined research and demonstration schemes.  相似文献   

10.
/ The Council on Environmental Quality's (CEQ's) principal aims in implementing the National Environmental Policy Act (NEPA) are (1) to reduce paperwork, (2) to avoid delay, and most importantly (3) to produce better decisions that protect, restore, and enhance the environment. This paper presents four strategies for improving the NEPA process along with tools that can be used to implement each strategy. The tools include guidelines for project management and problem definition, tips for acquiring existing information and identifying issues of public concern, worksheets on how to identify and analyze potential impacts on resources, ideas for enhancing NEPA documents, and a NEPA process checklist. The tools can be used at various stages of the NEPA process and provide a toolbox of guidelines and techniques to improve implementation of the NEPA process by focusing the pertinent information for decisionmakers and stakeholders. KEY WORDS: National Environmental Policy Act; NEPA; Environmental impact assessment; Ecosystem management  相似文献   

11.
An adaptation of the Drivers-Pressure-State-Impact-Response methodology is presented in this work. The differential DPSIR (ΔDPSIR) was developed to evaluate impacts on the coastal environment and as a tool for integrated ecosystem management. The aim of the ΔDPSIR is to provide scientifically-based information required by managers and decision-makers to evaluate previously adopted policies, as well as future response scenarios. The innovation of the present approach is to provide an explicit link between ecological and economic information related to the use and management of a coastal ecosystem within a specific timeframe. The application of ΔDPSIR is illustrated through an analysis of developments in a Southwest European coastal lagoon between 1985 and 1995. The value of economic activities dependent on the lagoon suffered a significant reduction (ca. −60%) over that period, mainly due to a decrease in bivalve production. During that decade the pressures from the catchment area were managed (ca. 176 million Euros), mainly through the building of waste water treatment plants. Notwithstanding this, the ecosystem state worsened with respect to abnormal clam mortalities due to a parasite infection and to benthic eutrophication symptoms in specific problematic areas. The negative economic impacts during the decade were estimated between −565 and −315 million Euros, of which 9–49% represent the cost of environmental externalities. Evaluation of these past events indicates that future management actions should focus on reducing the limitation on local clam seeds, which should result in positive impacts to both the local socio-economy and biodiversity.  相似文献   

12.
The problems posed by adaptive management for improved ecosystem health are reviewed. Other kinds of science-informed ecosystem management are needed for those regions of conflict between rapid human population growth, increased resource extraction, and the rising demand for better environmental amenities, where large-scale experiments are not feasible. One new framework is threshold-based resource management. Threshold-based resource management guides management choices among four major science and engineering approaches to achieve healthier ecosystems: self-sustaining ecosystem management, adaptive management, case-by-case resource management, and high-reliability management. As resource conflicts increase over a landscape (i.e., as the ecosystems in the landscape move through different thresholds), management options change for the environmental decision-maker in terms of what can and cannot be attained by way of ecosystem health. The major policy and management implication of the framework is that the exclusive use or recommendation of any one management regime, be it self-sustaining, adaptive, case-by-case, or high-reliability management, across all categories of ecosystems within a heterogeneous landscape that is variably populated and extractively used is not only inappropriate, it is fatal to the goals of improved ecosystem health. The article concludes with detailed proposals for environmental decision-makers to undertake “bandwidth management” in ways that blend the best of adaptive management and high-reliability management for improved ecosystem health while at the same time maintaining highly reliable flows of ecosystem services, such as water.  相似文献   

13.
/ Investigation of a delta marsh restoration project proposed forthe Don River in Toronto, Ontario, underlines several concerns aboutconstructed wetland projects designed for water quality improvement andaquatic habitat enhancement. The Don is a highly urbanized river that hasundergone significant physiographic modifications and continually receives acomplex mixture of conventional, metallic, and organic contaminants frommultiple point and nonpoint sources. Rather than providing permanent removalof urban contaminants, wetland processes offer a limited capacity fortemporary storage of contaminant inputs, and potential reactions may actuallyproduce more toxic and/or bioavailable forms of some chemicals. Theseprocesses tend to result in the concentration of watershed contaminants inwetland vegetation and sediments. As the restored marsh would be availablefor spawning and feeding by aquatic fauna, the potential exists for chemicalbioconcentration and biomagnification through the aquatic community.Accordingly, wetland systems are not suited to the dual purposes of waterquality improvement and aquatic habitat enhancement. Upstream controls,including source reduction of contaminant inputs, are recommended asessential components of all constructed wetland projects.KEY WORDS: Constructed wetlands; Water quality; Ecological restoration;Don River  相似文献   

14.
/ This paper presents a foundation for improving the risk assessmentprocess for freshwater wetlands. Integrating wetland science, i.e., use of anecosystem-based approach, is the key concept. Each biotic and abiotic wetlandcomponent should be identified and its contribution to ecosystem functionsand societal values determined when deciding whether a stressor poses anunreasonable risk to the sustainability of a particular wetland.Understanding the major external and internal factors that regulate theoperational conditions of wetlands is critical to risk characterization.Determining the linkages between these factors, and how they influence theway stressors affect wetlands, is the basis for an ecosystem approach.Adequate consideration of wetland ecology, hydrology, geomorphology, andsoils can greatly reduce the level of uncertainty associated with riskassessment and lead to more effective risk management. In order to formulateeffective solutions, wetland problems must be considered at watershed,landscape, and ecosystem scales. Application of an ecosystem approach can begreatly facilitated if wetland scientists and risk assessors work together todevelop a common understanding of the principles of both disciplines.KEY WORDS: Ecological risk assessment; Freshwater wetlands;Environmental pollution; Chemical stressors; Physical stressors; Biologicalstressors  相似文献   

15.
In 1996, nine federal agencies with mandates to inventory and manage the nation's land, water, and biological resources signed a memorandum of understanding entitled “Developing a Spatial Framework of Ecological Units of The United States.” This spatial framework is the basis for interagency coordination and collaboration in the development of ecosystem management strategies. One of the objectives in this memorandum is the development of a map of common ecological regions for the conterminous United States. The regions defined in the spatial framework will be areas within which biotic, abiotic, terrestrial, and aquatic capacities and potentials are similar. The agencies agreed to begin by exploring areas of agreement and disagreement in three federal natural-resource spatial frameworks—Major Land Resource Areas of the US Department of Agriculture (USDA) Natural Resources Conservation Service, National Hierarchy of Ecological Units of the USDA Forest Service, and Level III Ecoregions of the US Environmental Protection Agency. The explicit intention is that the framework will foster an ecological understanding of the landscape, rather than an understanding based on a single resource, single discipline, or single agency perspective. This paper describes the origin, capabilities, and limitations of three major federal agency frameworks and suggests why a common ecological framework is desirable. The scientific and programmatic benefits of common ecological regions are described, and a proposed process for development of the common framework is presented.  相似文献   

16.
/ In 1997, Oregon enacted amendments to its state hazardous waste site cleanup law which emphasize risk-based remedial action decisions. In a departure from US EPA practice, the amended statute and associated rules require that protection of ecological receptors occur at the population level for all plants and animals not listed as threatened or endangered. By rule, the acceptable risklevel for populations of ecological receptors is a 10% or less chance that 20% or more of the total local population would receive an exposure greater than the toxicity reference value for a hazardous substance. This paper describes a practical procedure for performing population-level ecological risk assessments using a combination of relatively simple techniques. The procedure involves: (1) establishing a distribution of exposures and a contaminant-specific toxicity reference value, either as a point value or a distribution, for an individual receptor, (2) estimating the abundance of these receptors within their local populations, (3) estimating the probability of an individual receptor experiencing an exposure in excess of the toxicity reference value, (4) estimating the number of individual receptors in the local population likely to experience an exposure above the toxicity reference value greater than 10% of the time, and (5) determining whether this number is greater than 20% of the total local population.  相似文献   

17.
In order to find out an alternative to traditional environmental policies in the State of São Paulo (Brazil), which have been mainly focused on legal standard compliance for air and water emissions, as well as in soil contamination, the Environmental Agency of São Paulo State — CETESB — launched a research project entitled Industrial Toxic Substances Use Reduction Programme. The project was launched in 2006 with funding from the United States Trade and Development Agency. Its aim was to propose new policies and strategies to reduce industrial releases of toxic compounds to the environment. Its general steps were the identification of an initial toxic chemical targets list; a review of successful programmes in the United States; the development of key elements and the establishment of alternative combinations of those elements for the implementation of an indigenous programme. Since project completion, CETESB has been discussing the possibility of implementing the results through a pilot project being developed jointly with industry representatives. This pilot project will serve as a model for a broader industrial toxic substances reduction programme to be implemented in São Paulo State.  相似文献   

18.
The amount of ecological restoration required to mitigate or compensate for environmental injury or habitat loss is often based on the goal of achieving ecological equivalence. However, few tools are available for estimating the extent of restoration required to achieve habitat services equivalent to those that were lost. This paper describes habitat equivalency analysis (HEA), a habitat-based “service-to-service” approach for determining the amount of restoration needed to compensate for natural resource losses, and examines issues in its application in the case of salt marsh restoration. The scientific literature indicates that although structural attributes such as vegetation may recover within a few years, there is often a significant lag in the development of ecological processes such as nutrient cycling that are necessary for a fully functioning salt marsh. Moreover, natural variation can make recovery trajectories difficult to define and predict for many habitat services. HEA is an excellent tool for scaling restoration actions because it reflects this ecological variability and complexity. At the same time, practitioners must recognize that conclusions about the amount of restoration needed to provide ecological services equivalent to those that are lost will depend critically on the ecological data and assumptions that are used in the HEA calculation.  相似文献   

19.
/ Marginal aquatic systems (wetlands) of the Po River (Italy) have become the target of a renewed interest because of their value for recreation, natural reserves, and deposits of sand. To preserve these sites, wise management must be the objective of local administrations. In this paper a strategy for the sustainable use of 11 wetlands is presented. It uses simple economic analysis and multiple criteria techniques and provides suggestions to promote sustainability in terms of conservation of natural resources, economic self-sufficiency, and minimization of potential conflicts about the use of the wetlands. In the understanding that sustainability is framed in a long-term perspective, stability analysis is also considered and performed by means of loop analysis, a qualitative technique. Conditions for stability are then discussed about management opportunities.  相似文献   

20.
The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wetland ecosystems. We have focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic composition; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitudinal and lateral connectivity is essential to the viability of populations of many riverine species; Finally, the invasion and success of exotic and introduced species in rivers is facilitated by the alteration of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates, and fish. Despite growing recognition of these relationships, ecologists still struggle to predict and quantify biotic responses to altered flow regimes. One obvious difficulty is the ability to distinguish the direct effects of modified flow regimes from impacts associated with land-use change that often accompanies water resource development. Currently, evidence about how rivers function in relation to flow regime and the flows that aquatic organisms need exists largely as a series of untested hypotheses. To overcome these problems, aquatic science needs to move quickly into a manipulative or experimental phase, preferably with the aims of restoration and measuring ecosystem response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号