首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow and Pollutant Dispersion in Street Canyons using FLUENT and ADMS-Urban   总被引:1,自引:0,他引:1  
This paper is devoted to the study of flow within a small building arrangement and pollutant dispersion in street canyons starting from the simplest case of dispersion from a simple traffic source. Flow results from the commercial computational fluid dynamics (CFD) code FLUENT are validated against wind tunnel data (CEDVAL). Dispersion results from FLUENT are analysed using the well-validated atmos pheric dispersion model ADMS-Urban. The k − ε turbulence model and the advection-diffusion (AD) method are used for the CFD simulations. Sensitivity of dispersion results to wind direction within street canyons of aspect ratio equal to 1 is investigated. The analysis shows that the CFD model well reproduces the wind tunnel flow measurements and compares adequately with ADMS-Urban dispersion predictions for a simple traffic source by using a slightly modified k − ε model. It is found that a Schmidt number of 0.4 is the most appropriate number for the simulation of a simple traffic source and in street canyons except for the case when the wind direction is perpendicular to the street canyon axis. For this last case a Schmidt number equal to 0.04 gives the best agreement with ADMS-Urban. Overall the modified k − ε turbulence model may be accurate for the simulation of pollutant dispersion in street canyons provided that an appropriate choice for coefficients in the turbulence model and the Schmidt number in the diffusion model are made.  相似文献   

2.
The goal of this study is to investigate numerically the wind flow and pollutant dispersion within an urban street canyon containing an elevated expressway and reveal the impacts of elevated expressway on the atmospheric environment in the canyon. A two-dimensional numerical model for simulating airflow and pollutant dispersion inside urban street canyons is first developed based on the Reynolds-averaged Navier–Stokes equations coupled with the standard k???ε turbulence model and the convection–diffusion equation for passive species transport, and then it is validated against a wind tunnel experiment. It was found that the model-predicted results agree well with the experimental data. Having established this, the wind fields and pollutant distributions in the canyon containing an elevated expressway are evaluated. The numerical results show that the expressway height above the street floor and the gap distance between the expressway and the building wall have considerable influence on airflow and pollutant level inside a canyon: (1) the vortical flow structure in the canyon varies with the expressway height for a constant gap distance, under certain expressway heights, only one main clockwise vortex is formed, while under others one main vortex as well as one or two secondary vortices above and below the expressway are created; (2) the pollutant level within the canyon increases when an expressway is placed in the canyon, especially when the expressway height equals the building height the flow velocities in the canyon are drastically reduced and air exchange in and above the canyon is seriously impeded by the expressway, which leads to a much higher pollution level in the canyon; and (3) the wider gap distance is favorable to pollutant removal from the canyon.  相似文献   

3.
This paper studies the effects of building orientations on the gaseous pollutant dispersion released from vehicles exhaust in street canyons through computational fluid dynamics (CFD) numerical simulations using three kε turbulence models. Four building orientations of the street canyon were examined in the atmospheric boundary layer. The numerical results were validated against wind-tunnel results to optimize the turbulence models. The numerical results agreed well with the wind-tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height in the street canyon was on the windward side for the building orientations θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the building orientation increases from θ?=?90°. The concentration in the cavity region for the building orientation θ?=?90° was higher than for the wind directions θ?=?112.5°, 135°, and 157.5°. The wind velocity and turbulence energy increase as the building orientation increases. The finding from this work can be used to help urban designers and policy-makers in several aspects.  相似文献   

4.
A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic induced flow rate and turbulence. The method is applied to pollutants dispersion in a street canyon. The approach is based on CFD calculations using Eulerian approach to the continuous phase and Lagrangian approach to the "discrete phase" of moving objects - vehicles. A commercial CFD code StarCD was used into which the Lagrangian model was integrated. As an example a street canyon is taken into consideration. It has the length of 50 m and the aspect ratio of 1.27. The speed of wind was assigned values of 4, 7 and 12 m/s at the altitude of 300 m. The total height of the domain is 115 m. In the study different traffic situations are considered, namely one-way and two-way traffic with different traffic rates per lane. The predictions show that different traffic situations affect pollutants dispersion in the street canyon and that there are also differences in the pollutants dispersion in case of one- and two-way traffic.  相似文献   

5.
In present study horizontal and vertical distribution of traffic-related pollutants (CO and SO(2)) within the street canyons in (CO and SO(2)) Varanasi, India was monitored. The results showed that average horizontal profiles of traffic-related pollutant concentrations within street canyon at leeward side were approximately same as that of windward side. However, the vertical concentration of both the pollutants decreases with height above the ground and study indicated that CO and SO(2) concentrations at different heights below the roof showed clear vertical self-gradient. CO and SO(2) concentration decreased with height and the minimum value occurred at the roof. It was concluded from the observed results that pollutants from vehicular exhaust emissions in the street canyon of Varanasi were evenly distributed. This result may be due to the fact that wind vortices are not formed. Therefore, urban planners can use this type of streets so that there is proper ventilation and dispersal of pollutants.  相似文献   

6.
The Computational Fluid Dynamics code CFX-TASCflow is used for simulating the wind flow and pollutant concentration patterns in two-dimensional wind-tunnel models of an urban area. Several two-dimensional multiple street canyon configurations are studied corresponding to different areal densities and roof shapes. A line source of a tracer gas is placed at the bottom of one street canyon for modelling street-level traffic emissions. The flow fields resulting from the simulations correspond to the patterns observed in street canyons. In particular and in good agreement with observations, a dual vortex system is predicted for a deep flat-roof street canyon configuration, while an even more complex vortex system is evidenced in the case of slanted-roof square street canyons. In agreement with measurement data, high pollutant concentration levels are predicted either on the leeward or the windward side of the street canyon, depending on the geometrical details of the surrounding buildings.  相似文献   

7.
Modelling of Fluid Flow and Pollutant Dispersion in a Street Canyon   总被引:6,自引:0,他引:6  
A two-dimensional steady state numerical simulation has been carried out for a typical street canyon ventilated by a cross-wind. The PHOENICS package from CHAM was used to solve for the air flow above and within the street canyon. The k-epsilon turbulence model was used for turbulence modelling and pollutant sources were added at ground level over the road but not over the pavements. Results for the air flow showed the formation of a longitudinal vortex within the street canyon, as found by other researchers. Pollutant concentrations were predicted with the highest values occurring at the leeward walls of the upwind buildings, and the lowest values on the windward walls of the downwind buildings. The accuracy of these simulations was examined by comparing the predicted results with field observations. Reasonable agreement was obtained, confirming the difference between concentrations on the leeward and windward walls. The results show that the dispersion characteristics can be simulated in terms of structural configurations.  相似文献   

8.
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.  相似文献   

9.
In urban conditions, car exhaust gases are often emitted inside poorly ventilated street canyons. One may suppose however that moving cars can themselves produce a certain ventilation effect in addition to natural air motions. Such ventilation mechanism is not sufficiently studied so far. A similarity criterion relating the vehicle- and wind-induced components of turbulent motion in an urban street canyon was proposed in 1982 by E. J. Plate for wind tunnel modelling purposes. The present study aims at further evaluation of the criterion and its applicability for a variety of wind and traffic conditions. This is accomplished by joint analyses of data from numerical simulations and wind tunnel measurements.  相似文献   

10.
Wind flow and turbulence within the urban canopy layer can influence the heating and ventilation of buildings, affecting the health and comfort of pedestrians, commuters and building occupants. In addition, the predictive capability of pollutant dispersion models is heavily dependent on wind flow models. For that reason, well-validated microscale models are needed for the simulation of wind fields within built-up urban microenvironments. To address this need, an inter-comparison study of several such models was carried out within the European research network ATREUS. This work was conducted as part of an evaluation study for microscale numerical models, so they could be further implemented to provide reliable wind fields for building energy simulation and pollutant dispersion codes. Four computational fluid dynamics (CFD) models (CHENSI, MIMO, VADIS and FLUENT) were applied to reduced-scale single-block buildings, for which quality-assured and fully documented experimental data were obtained. Simulated wind and turbulence fields around two surface-mounted cubes of different dimensions and wall roughness were compared against experimental data produced in the wind tunnels of the Meteorological Institute of Hamburg University under different inflow and boundary conditions. The models reproduced reasonably well the general flow patterns around the single-block buildings, although over-predictions of the turbulent kinetic energy were observed near stagnation points in the upwind impingement region. Certain discrepancies between the CFD models were also identified and interpreted. Finally, some general recommendations for CFD model evaluation and use in environmental applications are presented.  相似文献   

11.
A wind tunnel study was performed to determine the dispersion characteristics of vehicle exhaust gases within the urban canopy layer. The results were compared with those from a field monitoring station located in a street canyon with heavy traffic load. The agreement found was fair. In the second part of the paper it is shown how wind tunnel data can be utilized to supplement and thereby enhance the value of field data for model validation purposes. Uncertainty ranges were quantified which are inherent to mean concentration values measured in urban streets.  相似文献   

12.
An integrated method for the prediction of the spatial pollution distribution within a street canyon directly from a microscopic traffic simulation model is outlined. The traffic simulation package Paramics is used to model the flow of vehicles in realistic traffic conditions on a real road network. This produces details of the amount of pollutant produced by each vehicle at any given time. The authors calculate the dispersion of the pollutant using a particle tracking diffusion method which is superimposed on a known velocity and turbulence field. This paper shows how these individual components may be integrated to provide a practical street canyon pollution model. The resulting street canyon pollution model provides isoconcentrations of pollutant within the road topography.  相似文献   

13.
The dispersion of pollutants from naturally ventilated underground parking garages has been studied in a boundary layer wind tunnel. Two idealized model setups have been analysed, one was simulating pollutant dispersion around an isolated rectangular building and one was representing dispersion in a finite array of idealized building blocks. Flow and dispersion close to modelled ground level emission sources was measured. The results illustrate the complexity of the flow around buildings and provide insight in pollutant transport from ground level sources located directly on building surfaces. As a result, areas critical with respect to high pollutant concentrations could be visualized. Particularly, the results show high concentration gradients on the surface of the buildings equipped with modelled emission sources. Inside the boundary layers on the building walls, a significant amount of pollutants is transported to upwind locations on the surface of the building. The paper documents the potential of physical modelling to be used for the simulation and measurement of dispersion close to emission sources and within complex building arrangements.  相似文献   

14.
This paper is concerned with a preliminary experimental investigation of the interaction between large turbulent structures, generated in the wake of a circular cylinder, and the rough-wall turbulent boundary layer separated flow immediately downstream of a simple street canyon type geometry represented by backward-facing step. The motivation for the work was to provide some initial data for the validation of a 3-D k- turbulence model used for the prediction of flows and pollutant dispersion within the urban canopy. The aim has been to assess the extent of the perturbation of a simulated street canyon caused by regular large-scale eddies generated upstream. The research has involved the use of thermal anemometry to determine mean velocity and turbulence characteristics both upstream and downstream of the step, together with the mean reacttachment length for the recirculating flow. The results indicate that the presence of the cylinder in the flow reduces the reattachment length. In addition, the periodic structures generated in the cylinder wake are rapidly mixed with the turbulence in the step shear layer such that no periodicity is detected at the reattachment zone.  相似文献   

15.
Mathematical models were developed to simulate the production and dispersion of aerosol phase atmospheric pollutants which are the main cause of the deterioration of monuments of great historical and cultural value. This work focuses on Particulate Matter (PM) considered the primary cause of monument darkening. Road traffic is the greatest contributor to PM in urban areas. Specific emission and dispersion models were used to study typical urban configurations. The area selected for this study was the city of Florence, a suitable test bench considering the magnitude of architectural heritage together with the remarkable effect of the PM pollution from road traffic. The COPERT model, to calculate emissions, and the street canyon model coupled with the CALINE model, to simulate pollutant dispersion, were used. The PM concentrations estimated by the models were compared to actual PM concentration measurements, as well as related to the trend of some meteorological variables. The results obtained may be defined as very encouraging even the models correlated poorly: the estimated concentration trends as daily averages moderately reproduce the same trends of the measured values.  相似文献   

16.
A measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki in 2003–2004. The concentrations of NO x , NO2, PM10 and PM2.5 were measured at street level and at roof level at an urban background location. This study utilises the data measured from 1 Jan to 30 April, 2004, when wind speed and direction measurements were also conducted on-site at the roof level. The computational fluid dynamics model ADREA-HF was used to compute the street concentrations, and the results were compared with the measurements. The predictions for the selected cases agreed fairly well (within < 25 % for 15 min average values) with the measured data, except for two cases: a windward flow in case of a low wind speed, and a moderate southerly flow parallel to the street canyon. The main reasons for the differences of predictions and measurements are the negligence of traffic-induced turbulence in the modelling and an under-prediction of ventilation of urban background air from a crossing street. Numerical results are presented for various example cases; these illustrate the formation of the vortices in the canyon in terms of the wind direction and speed and the influence of the characteristics of the flow fields on the concentration distributions.  相似文献   

17.
Three-dimensional turbulent flow and dispersion of gaseous pollutants carbon monoxide (CO) and nitrogen oxides (NOx) in a road tunnel was modeled using the standard kε turbulence model and solved numerically using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources along the tunnel floor. The effects of fan ventilation and piston effect of moving vehicles on the airflow and pollutant dilution were examined. The numerical results reveal that a peak velocity exists near the tunnel floor due to the piston effect of vehicles. The cross-sectional concentrations of air pollutants are non-uniformly distributed and concentrations rise with downstream distance. The piston effect of vehicles can alone provide 25%–34% dilution of air pollutants in the tunnel, compounded 43%–70% dilution effect according to the ventilation condition.  相似文献   

18.
Towards the aim of improving the air quality in the urban environment via the application of innovative TiO2 based photocatalytic coverings, a field campaign took place within the frame of the EU PICADA project () to asses the expected depollution efficiency of such materials under realistic conditions. Furthermore, extensive numerical modeling was performed via the application of the RANS CFD code for microscale applications MIMO, in an effort to asses the sensitivity of the developing flow field and the corresponding dispersion mechanism and hence of the depollution efficiency of the PICADA products on a wide range of factors, with most notably the length of the street canyon, the thermal exchange between the heated street canyon walls and the air and the approaching wind direction. For the needs of the PICADA project a new, simple module had to be implemented into MIMO to be able to model the removal of NOx from a street canyon whose walls have been treated with a photocatalytic product. The model simulations results presented in this paper, show that MIMO is indeed capable of predicting the effectiveness of the photocatalytic products in question. At the same time, they reveal a strong dependence of the developing flow and concentration fields inside the field site street canyon configuration on most of the aforementioned factors with most notably the direction of the approaching wind.
N. MoussiopoulosEmail:
  相似文献   

19.
以ENVI-met为数值模拟平台,采用人行道和墙面污染物浓度为评价指标,在保持街谷建筑平均高度不变(建筑面积不变)的前提下,设置27个情景开展街谷建筑高度非均匀性对空气污染影响的对比模拟研究。结果发现:在不同风速条件下街谷建筑高度的非均匀性对街谷污染均具有较大的减轻作用。非均匀程度越大,污染强度减轻作用越大;错列式非均匀方式对污染的减轻作用大于行列式;非均匀性对街谷墙面污染的减轻作用大于人行道污染减轻作用。  相似文献   

20.
A single compartment model has been constructed for predicting hourly concentrations of pollutant concentrations arising from vehicular emissions within a typical street canyon. The model takes account of traffic densities and composition to estimate pollutant emissions within the model compartment. Meteorological data on wind speed and direction are used to define the exchanges of pollutants between the compartment and the surrounding air. A parameter is also included to describe the exchange in calm conditions. The pollutant concentrations are then estimated from a steady state mass balance equation for the compartment, assuming conservation of pollutants. The model was applied to the prediction of carbon monoxide concentrations in Hope Street, Glasgow. Model parameters were fitted using field measurements, together with concurrent meteorological data and traffic flows estimated from traffic census data for Hope Street. The model accounted well for the observed variations in carbon monoxide. It was found that the model parameters varied seasonally, perhaps due to differences in atmospheric stability which have not so far been included in the model formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号