首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
It is a current practice that refrigerators and freezers in many countries are shredded after the end of useful lives. The shredder residue is deposited in landfills. During the shredding process a significant fraction of blowing agent (BA) in the insulation foam may be released into the atmosphere. The objective of this study is to determine the fraction of BA released from foam during shredding, by comparing the BA content in insulation foam of refrigerator units before shredding with the BA content of shredded foam. All foam samples analyzed were manufactured with trichlorofluoromethane [CFC-11 (CCl3F)] as BA. The average content of BA in the insulation foam from eight U.S. refrigerator units manufactured before 1993 was found to be 14.9% +/- 3.3% w/w. Several refrigerator units also identified as being manufactured before 1993 were stockpiled and shredded at three shredder facilities, of which one was operated in both wet and dry modes. The selected shredder facilities represent typical American facilities for shredding automobiles, refrigerators, freezers, and other iron containing waste products. Shredded material was collected and separated on location into four particle size categories: more than 32 mm, 16-32 mm, 8-16 mm, and 0-8 mm. Adjusting for sample purity, it was found that the majority (>81%) of the foam mass was shredded into particles larger than 16 mm. The smallest size fraction of foam (0-8 mm) was found to contain significantly less BA than the larger size categories, showing that up to 68% +/- 4% of the BA is released from these fine particles during the shredding process. Because only a minor fraction of the foam is shredded into particles smaller than 8 mm, this has a minor impact on the end result when calculating the total BA release from the shredding process. Comparing BA content in shredded samples from the three shredder facilities with the measured average BA content of the eight refrigerator units, it was found that on average 24.2% +/- 7.5% of the initial BA content is released during the shredding process.  相似文献   

2.
Formation characteristics of PCDD and PCDF during pyrolysis processes   总被引:1,自引:0,他引:1  
In recent years, pyrolysis processes have become technologies developed to industrial scale and discussed as alternatives to the existing waste combustion technology. However, little information is published regarding PCDD/F formation characteristics during pyrolysis processes. Two common shredder fractions – industrial light shredder (ILS) and refrigerators (REF) – both with high chlorine and copper content were pyrolysed for this pyrolysis study using a pilot plant with a capacity of 100 kg/h. At oxygen concentrations below 2% and temperatures between 430°C and 470°C, considerable amounts of PCDD/F were formed during the pyrolysis. More than 90% of total TEQ was found in the oil fraction (gas phase). The PCDD/PCDF ratio and the homologue pattern differed significantly from those formed during waste incineration. Considering mono- to octachlorinated congeners, up to 400 times more PCDF were formed compared to PCDD. For the investigated pyrolysis conditions, the formation of low chlorinated congeners was highly favoured. The distribution of TEQ within the individual congeners were very similar in all investigated runs. More than 80% of total TEQ stem from 2,3,7,8-substituted T4CDF and P5CDF. The isomer pattern, however, did not show significant differences compared to the common waste incineration pattern suggesting that the basic formation routes are similar.  相似文献   

3.
Plant litter and organic sediments are a main sink for metals and metalloids in aquatic ecosystems. The effect of invertebrate shredder (a key species in litter decay) on metal/metalloid fixation by organic matter is described only under alkaline water conditions whereas for slightly acidic waters nothing can be found. Furthermore, less is known about the effect of invertebrate shredders on the quality of dissolved organic carbon (DOC) and nitrogen (DON) released during litter decay. We conducted an experiment to investigate the impact of invertebrate shredder (Gammarus pulex) on metal/metalloid fixation/remobilization and on the quality of DOC/DON released under slightly acidic water conditions. During decomposition of leaf litter, invertebrate shredder facilitated significantly the emergence of smaller particle sizes of organic matter. The capacity of metal fixation was significantly higher in smaller particles (POM 2,000?C63???m) compared to original leaf litter and litter residues. Thus, G. pulex enhanced metal fixation by organic partition of sediments by increasing the amount of smaller particle of organic matter in aquatic ecosystems. In contrast, the capacity of metal/metalloid fixation in the smallest fraction of POM (<63???m) was lower compared with leaf residues in treatment without invertebrates. Remobilization of metals and metalloids was very low for all measured elements. A significant effect of invertebrates on quantitative formation of DOC/DON was confirmed. The quality of released DOC/DON, which may affect metal/metalloid remobilization, was also significantly affected by invertebrate shredders (e.g., more carboxylates). Hence, invertebrate shredder enhanced significantly the fixation of metals/metalloids into POM in slightly acidic environments.  相似文献   

4.
钢渣掺量对泡沫混凝土砌块性能的影响   总被引:1,自引:0,他引:1  
泡沫混凝土是一种环保、节能的保温隔热材料,以其优良的保温性能,受到越来越多研究者的关注。对钢渣的特性进行了分析测试,对钢渣不同掺量对泡沫混凝土砌块特性的影响进行了研究,结果表明,采用添加5%~35%钢渣所制备的钢渣泡沫混凝土砌块,其密度等级为JC/T1062—2007中的B10级,掺人5%、15%钢渣的泡沫混凝土抗压强度达到A3.5等级,掺人25%、35%钢渣的泡沫混凝土抗压强度达到A2.5等级。随着钢渣掺量的增大,抗压强度、抗折强度降低,吸水率增大。在同一钢渣掺量的情况下,泡沫混凝土砌块的抗压强度变化率增加显著,而且随着钢渣的加入量升高而增大。钢渣的加入有利于提高泡沫混凝土砌块的后期抗压强度。  相似文献   

5.
The Baltic Sea Region has a large number of landfills that need remediation after care routines and control, in order to avoid future emissions to the environment and to fulfil the demands in the EU Waste Council Directive on the landfill of waste. Based on the Måsalycke test screening, an excavation of whole or of parts of the landfill can be seen as a potential measure for some of the old landfills. The material excavated in the test was screened into the fractions: < 18 mm, 182-50 mm and > 50 mm. The coarsest fraction (> 50 mm) contained 50% wood and paper. The medium-sized fraction (18–50 mm) contained stones and indefinable soil-like material, while the fine fraction contained peat-like material with some other small waste components. The spectral analysis of heavy metals indicated only high concentrations of zinc and there was no significant difference between the fine and the medium-sized fractions. The medium sized and the unsorted fraction was moisturized and refilled into the pit. The methane content in the landfill gas from the pit was 50–57% in the sorted material with a flow of 8–17 l/min and 38–57% in the unsorted fraction with a flow of 2–13 l/min during the first 1.5 year. The Måsalycke landfill is in the methanogenic phase and leachate concentrations are normal. Landfill mining can be used to prolong the landfill lifetime and/or used as a tool for remedial actions in contaminated sites.  相似文献   

6.
利用废CRT屏玻璃为原料制备泡沫玻璃   总被引:3,自引:1,他引:2  
以废阴极射线管(CRT)屏玻璃为主要原料,碳黑为起泡剂,采用粉末烧结法制备了低密度保温泡沫玻璃。通过扫描电镜(SEM)、导热系数测定仪等分析手段,研究了起泡剂的用量、发泡温度和发泡时间对泡沫玻璃泡径、密度、热学性能以及机械力学性能的影响。结果表明,在相同烧制工艺条件下,随起泡剂掺加量增加,烧制所得的泡沫玻璃密度成"V"型变化;当其掺加量为0.20%时,泡沫玻璃在密度、孔径分布以及力学性能上均达到最佳。随着发泡温度的提高和发泡时间的延长,密度会逐渐减小,泡沫玻璃的气泡会逐渐增大,以致产生连通现象。当发泡温度为820℃、发泡时间为30min时烧制的泡沫玻璃密度为0.180 g/cm3,导热系数为0.0695 W/(m.K)。  相似文献   

7.
Hwang IH  Yokono S  Matsuto T 《Chemosphere》2008,71(5):879-885
Automobile shredder residue (ASR) was pretreated to improve its quality for fuel utilization. Composition analysis revealed that ASR components could be classified into four groups: (1) urethane and textile-light fraction and combustibles containing low levels of ash and Cl; (2) plastics and rubber-light or heavy fraction and combustibles containing high levels of Cl; (3) metals and electrical wire-heavy fraction and incombustibles, and (4) particles smaller than 5.6mm with high ash contents. Based on these results, we successively performed sieving to remove particles smaller than 5.6mm, float and sink separations to reject the heavy fraction and plastics and rubber containing Cl, thermal treatment under an inert atmosphere to remove Cl derived from PVC, and char washing to remove soluble chlorides. This series of pretreatments enabled the removal of 78% of the ash and 91% of the Cl from ASR. Sieving using a 5.6-mm mesh removed a considerable amount of ash. Product quality was markedly improved after the float and sink method. Specifically, the sink process using a 1.1 g cm(-3) medium fluid rejected almost all rubber containing Cl and a large amount of PVC. The remaining Cl in char, after heating at 300 degrees C under an inert atmosphere and washing, was considered to be present as insoluble chlorides that volatilized at temperatures above 300 degrees C. Based on a tradeoff relationship between product quality and treatment cost, ASR may be utilized as a form of refuse plastic fuel or char.  相似文献   

8.
Abstract

Raw poultry litter has certain drawbacks for energy production such as high ash and moisture content, a corrosive nature, and low heating values. A combined solution to utilization of raw poultry litter may involve fractionation and pyrolysis. Fractionation divides poultry litter into a fine, nutrient-rich fraction and a coarse, carbon-dense fraction. Pyrolysis of the coarse fraction would remove the corrosive volatiles as bio-oil, leaving clean char. This paper presents the effect of fractionation and pyrolysis process parameters on the calorific value of char and on the characterization of bio-oil. Poultry litter samples collected from three commercial poultry farms were divided into 10 treatments that included 2 controls (raw poultry litter and its coarse fraction having particle size greater than 0.85 mm) and 8 other treatments that were combinations of three factors: type (raw poultry litter or its coarse fraction), heating rate (30 or 10 °C/min), and pyrolysis temperature (300 or 500 °C). After the screening process, the poultry litter samples were dried and pyrolyzed in a batch reactor under nitrogen atmosphere and char and condensate yields were recorded. The condensate was separated into three fractions on the basis of their density: heavy, medium, and light phase. Calorific value and proximate and nutrient analysis were performed for char, condensate, and feedstock. Results show that the char with the highest calorific value (17.39 ± 1.37 MJ/kg) was made from the coarse fraction at 300 °C, which captured 68.71 ± 9.37% of the feedstock energy. The char produced at 300 °C had 42 ± 11 mg/kg arsenic content but no mercury. Almost all of the Al, Ca, Fe, K, Mg, Na, and P remained in the char. The pyrolysis process reduced ammoniacal-nitrogen (NH4-N) in char by 99.14 ± 0.47% and nitrate-nitrogen (NO3-N) by 95.79 ± 5.45% at 500 °C.  相似文献   

9.
ABSTRACT

The present work outlines the main results of a full-scale study conducted on the utilization of waste tires as auxiliary fuel in cement production. Experimental tests were conducted for determining the influence of shredded tires on combustion conditions, emissions produced, and the characteristics of clinker obtained, for feeding ratios over 35% in terms of total heat input. The addition of tire chips did not lead to any appreciable modification in either the whole process or the quality of clinker produced; gaseous emissions were mostly unaffected, with significant improvements related to the reductions obtained in nitrogen and sulfur oxides concentrations. Experimental findings from tests conducted with tire chips exposed to kiln combustion flue gases compare favorably with the typical burnout times derived from theoretical approaches. These experimental data and calculations to estimate particle trajectories beyond the injection point, through proper theoretical analysis of the kinetic behavior, result in important indications for the shredding operation and for optimum injection modes.  相似文献   

10.
Releases of CFCs occur promptly from applications such as aerosol sprays, or over a period of several years from refrigeration and air conditioning or more slowly still from use as blowing agents for closed cell plastic foams. As a consequence of the Montreal Protocol, the emissions have fallen and their pattern is continuing to change. To help quantify these changes the emissions from closed cell foam blowing have been re-examined in a comprehensive market survey, developing a lifecycle assessment for each foam type, production method and foaming agent.The original model for the time series of emissions from foam applications was shown to remain a robust representation in general terms. There is an “immediate” loss when the foam is manufactured, a slow emission from the foam itself during use and a loss on disposal of the artefact made with the foam. The original model used an initial loss rate of 10% and a subsequent loss of 4.5% yr−1 over 20 yr.The new survey showed a wide range of initial and service loss rates. Immediate release ranges from 95% down to 4%; similarly, the rate of loss during service varies from 0.5% to 5% yr−1 and the service lifetimes of the artefacts made with the foams varies from 12 to 50 yr. The apparent emission function, in terms of the mean value of the annual fractional release from the bank of CFC-11 residing in foams, was calculated from the survey to be 0.043±0.008 over 28 yr. There is a small and non-significant fall in this function with time; so that over the last ten years of the data record the more appropriate value is 0.0366±0.0008. However, up to the early 1990s, it is the original emission function that is consistent with the observed atmospheric concentrations. Thenceforth this function seriously overpredicts the concentrations but, if the new emissions function for foams is used from 1993 onwards in conjunction with the original emission functions for all other uses, the fit becomes better. This suggests that the emission functions for prompt and short term releases remain valid and should be coupled with the new function to calculate emissions of CFC-11 or other fluorocarbon foam blowing agents from the early 1990s onwards.  相似文献   

11.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


12.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   

13.
As part of an international research project, aerosol samples were collected by several filter-based devices on Nuclepore polycarbonate membrane, Teflon membrane and quartz fibre filters over separate daylight periods and nights, and on-line aerosol measurements were performed by TEOM and aethalometer within an urban canyon (kerbside) and at a near-city background site in Budapest, Hungary from 23 April–5 May 2002. Aerosol masses in PM2.0, PM10–2.0, PM2.5, PM10 size fractions and of TSP were determined gravimetrically; atmospheric concentrations of organic (OC) and elemental carbon (EC) for PM2.5 (or PM2.0), PM10 fractions and for TSP were measured by thermal–optical transmission method. Repeatability of the mass determination by Nuclepore filters seems to be 5–6%. Collections on Teflon filters yielded smaller mass on average by 8(±12)% than that for the Nuclepore filters. Quartz filters overestimated the PM10 mass in comparison with the Nuclepore filters due primarily to sampling artefacts on average by 10(±16)% at the kerbside. Tandem filter set-ups were utilised for correcting the sampling artefacts for OC by subtraction method. At the kerbside, the aerosol mass was made up on average of 35(±4)% of organic matter (OM) in the PM10 fraction, while the contribution of OM to the PM2.5 mass was 43(±9)%. At the background, OM also accounted for 43(±13)% of the PM2.0 mass. On average, EC made up 14(±6)%, 7(±2)% and 4.5(±1.1)% of the mass in the PM2.5, PM10 fractions and TSP, respectively, at the kerbside; while its contribution was only 2.1(±0.5)% in the PM2.0 fraction in the near-city background. Temporal variability for PM mass, OC and EC concentrations was related to road traffic, local meteorology and long-range transport of air masses. It was concluded that a direct coupling between the atmospheric concentration levels and vehicle circulation can be identified within the urban canyon, nevertheless, the local meteorology in particular and long-range transport of air masses have much more influence on the air quality than changes in the source intensity of road traffic. Concentration ratios of OC/EC were evaluated, and the amount of secondary organic aerosol (SOA) was estimated by using EC as tracer for the primary OC emissions. Mean contribution and standard deviation of the SOA to the OM in the PM2.5 size fraction at the kerbside over daylight periods and nights were of 37(±18) and 46(±16)%, respectively.  相似文献   

14.
This study was designed to determine the effect of source combinations on formaldehyde levels under whole-house conditions. Evaluations were conducted on particleboard (applied as subflooring) and hardwood plywood panelling (applied as a wall covering) both singly and in combination, and on urea-formaldehyde foam insulation and particleboard. Formaldehyde source combination/interaction evaluations revealed several different outcomes, including no augmentation of formaldehyde levels, a slight augmentation (30-50%) and complete addivity. Additivity was observed for regular and low emission grade particleboard and hardwood plywood combinations and for urea-formaldehyde foam insulation and particleboard subflooring. In contrast, controlled chamber studies employing samples of the same wood materials revealed no additive effects. Results of these studies raise questions about the reliability of using laboratory evaluations alone to predict formaldehyde levels under real-world residential conditions.  相似文献   

15.
The superficial deposit on the bark surface of several trees (mainly Fraxinus excelsior L.) was sampled in the experimental station of the university campus in Grenoble (France). Its composition was studied by scanning electron microscopy–energy dispersive X-ray emission (SEM–EDX) and, after digestion, by inductively coupled plasma-mass spectrometry (ICP-MS). The deposit was composed of 81.3% ± 7.4 organic matter, 9.4% ± 4.9 of geogenic minerals issued from the atmosphere (atmospheric geogenic fraction: AGF) and 9.3% ± 2.7 of a mixture of elements which was called anthropogenic atmospheric elements fraction (AAEF). The SEM–EDX analysis showed the presence of particles of geogenic compounds such as different types of silicates, phosphates, carbonates, sulphates, oxides and also particles of metals such as iron or of alloys of Fe–Zn, Fe–Ni, Ni–Cr and Ca sulphates or phosphates. Typical spheres of “fly ashes” composed of pure iron or Al-silicates were detected. Using the SEM–EDX analysis of the deposit and the average local soil composition, an empiric formula for the AGF (without polluting elements) was chosen, which presented a clear analogy with the global formula of the upper continental crust. In the same way, a formula for the pure organic matter fraction was chosen. Withdrawing the elements corresponding to these two fractions allows a tentative estimation of the content of the AAEF which was supposed to better represent the elemental anthropogenic contamination issued from the atmosphere. In the station, most of Sb, Cd, Sn, Pb, Cu, V and Zn were found in the AAEF. This AAEF composition was compared to that of the deposit in a highway tunnel where Pb and Cu were at a very high level. The meaning and the limits of the AAEF concept were critically discussed.  相似文献   

16.

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90–100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45–1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L−1; Cr 1.5 mg L−1; Fe, Pb, and Zn 3.0 mg L−1; Mn and Ni 1 mg L−1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  相似文献   

17.
Aerosol (total suspended particulate) samples collected at three diverse locations (urban-commercial, semi-urban and rural-agricultural) in Patiala, India were analyzed for loss on ignition (LOI) and organic tarry matter (OTM) content in ambient air during crop residue burning (CRB) episodes and non-crop residue burning (NCRB) months in 2006–2007. Results showed high levels of LOI and OTM during wheat and rice crop residue-burning periods at all the sites. Higher levels were obtained during rice crop residue-burning period as compared to the wheat residue-burning period. At semi-urban site, LOI varied between 53 ± 36 μg m?3 and 257 ± 14 μg m?3 constituting 38–78% (w/w) part of the aerosols whereas levels of OTM varied between 0.98 ± 0.11 μg m?3 and 7.93 ± 2.76 μg m?3 comprising 0.42–3.28% (w/w) fraction. At rural-agricultural area site, levels of LOI varied between 86 ± 40 μg m?3 and 293 ± 70 μg m?3 comprising 27–84% (w/w), whereas OTM levels varied between 1.31 ± 0.64 μg m?3 and 10.09 ± 6.56 μg m?3 constituting 0.83–2.42% (w/w) fraction of the aerosols. At urban-cum-commercial site, levels of LOI and OTM varied between 48 ± 23 μg m?3 and 281 ± 152 μg m?3 and 2.53 ± 1.23 μg m?3 and 17.40 ± 8.50 μg m?3, constituting 24–62% (w/w) part of the aerosols, respectively. Results also indicated that OTM and LOI were integral parts of aerosols and their concentrations were influenced by the crop residue burning practices with incorporated effect of vehicular activities in Patiala.  相似文献   

18.
A TDMA system (Tandem Differential Mobility Analyzer; Rader D.J. and McMurry P.H. J. Aerosol Sci. 17, 771–787, 1986) was used to measure the sensitivity of particle size to relative humidity for monodisperse Los Angeles aerosols. Measurements were made at Claremont, CA on 13 days between 19 June and 3 September 1987, in conjunction with the Southern California Air Quality Study (SCAQS). The particle sizes that were studied ranged from 0.05 μm to 0.5 μm diameter at ambient relative humidity (typically 45–65%).The data provide clear evidence that these atmospheric aerosols were externally mixed. Monodisperse ambient aerosols were often found to split into nonhygroscopic (no water uptake) and hygroscopic portions when humidified. An average of 30% of the particles in the 0.2–0.5 μm range were nonhygroscopic. However, the proportion of the particles that was nonhygroscopic varied considerably from day to day and was, on occasion, as high as 70–80% of the particles. There was no clear evidence for nonhygroscopic 0.05 μm particles, but the data are not definitive on this point.The data also show that for the hydrophilic aerosol fraction, the larger particles (0.4–0.5 μm) grew more when humidified than did smaller particles (0.05–0.2 μm). As relative humidities were increased from 50% to 90%, particle diameters grew by average factors of 1.46 ±0.02 (for 0.5 μm particles), 1.49 ± 0.08 (0.4 μm), 1.19 ± 0.08 (0.2 μm) and 1.12 ± 0.05 (0.05 μm). Similarly, when particles were dried from 50% RH to 6–10% RH, particle diameters changed by factors ranging from 0.94 ± 0.03 (0.5 μm) to 0.98 ± 0.01 (0.05 μm).  相似文献   

19.
20.
The Diffusive Gradients in Thin films (DGT) technique is an operationally defined method to determine the dissolved fraction of trace elements in water. The aim of this study was to develop this technique for the measurement of the bioavailable mercury species in natural waters. For that purpose, three types of DGT units (commercial, manufactured with agarose diffusive gel (DG) and manufactured with polyacrylamide DG) were tested under controlled conditions using an Hg(II) solution both with and without dissolved organic matter (DOM). An acid digestion method using aqua regia was optimised to efficiently digest the resin gel discs prior to analysis. A good performance was obtained for the three DGT types when deployed in a DOM-free mercury solution in the laboratory, and it was demonstrated that polyacrylamide gel can be used as diffusive layer for mercury sampling. However, when the DGT units were deployed in a mercury solution containing DOM, performance differences were observed. Furthermore, the mass of background mercury (blanks) varied among the different DGT types. In the light of the results, the devices manufactured with polyacrylamide DG seemed to be the best choice for dissolved mercury determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号