首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

2.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

3.
Abstract

Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 μg/m3). The concentration and size distribution were measured at different distances (0.05–15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 μm), and PM2.5 (suspended PM smaller than 2.5 μm) are 1111, 825, and 236 μg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is ~0.7 μm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are ~55, 50, 44, 22, and 30%, respectively. Furthermore, the PM10 control efficiencies are ~45, 41, 54, 35, and 30%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10%, individually.  相似文献   

4.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

5.
The bilinear receptor model positive matrix factorization (PMF) was used to apportion particulate matter with an aerodynamic diameter of 1–10 μm (PM1–10) sources in a village, B?ezno, situated in an industrial region of northern Bohemia in Central Europe. The receptor model analyzed the data sets of 90- and 60-min integrations of PM1–10 mass concentrations and elemental composition for 27 elements. The 14-day sampling campaigns were conducted in the village in summer 2008 and winter 2010. Also, to ensure seasonal and regional representativeness of the data sets recorded in the village, the spatial-temporal variability of the 24-hr PM10 and PM1–10 within 2008–2010 in winter and summer across the multiple sites was evaluated. There were statistically significant interseasonal differences of the 24-hr PM data, but not intrasummer or intrawinter differences of the 24-hr PM1–10 data across the multiple sites. PMF resolved seven sources of PM1–10. They were high-temperature coal combustion; combustion in local heating boilers; marine aerosol; mineral dust; primary biological/wood burning; road dust, car brakes; and gypsum. The main summer factors were assigned to mineral dust (38.2%) and primary biological/wood burning (33.1%). In winter, combustion factors dominated (80%) contribution to PM1–10. The conditional probability function (CPF) helped to identified local sources of PM1–10. The source of marine aerosol from the North Sea and English Channel was indicated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT).

Implications: This is the first application of PMF to highly time/size resolved PM data in Czech Republic. The coarse aerosol fraction, PM1–10, was chosen with regard to industrial character of the region, sampling site near the coal strip mine and coal power stations. Contrary to expectation, source apportionment did not show dominance of emissions from the coal strip mine. The results will enable local authorities and state bodies responsible for air quality assessment to focus on sources most responsible for air pollution in this industrial region.

Supplemental Materials:?Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of measurement campaigns; (2) CPF for each of the sources contributing to PM1–10; (3) factors contribution to PM1–10 resolved by PMF; (4) diurnal pattern of road dust, car brake factor in summer and winter; (5) trajectories during the marine aerosol episode in winter 2010; and (6) temporal temperature, concentration, and wind speed relationships during the summer 2008 campaign and winter 2010 campaign.  相似文献   

6.
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153?±?33 μg/m3, and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32–3.2-μm range, and the PM concentration increased significantly in the range of 0.32–3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34–48 % of TSP mass. High concentrations of ammonia (12.9–49 μg/m3) and SO2 (2.6–27 μg/m3) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18–3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20 % higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.  相似文献   

7.
During August, 1982 and January and February, 1983, General Motors Research Laboratories operated air monitoring sites on the Atlantic Coast near Lewes, Delaware and 1250 km to the east on the southwest coast of Bermuda. The overall purpose of this project was to study the transformations of the principal acid precipitation precursors, NO x and SO x species, as they transport under conditions not complicated by emissions from local sources. In this paper, the measurements of gas and particulate species from Lewes are described and the composition and sources of sulfate aerosol, which is the most important haze-producing species, are investigated.

On the average, the total suspended particulate (TSP) concentration was 27.9 μg/m3 while the PM10 (mass of particles with a diameter less than or equal to 10 μm) concentration was 22.0 μg/m3 or 79 percent of the TSP. The PM10 consisted of 6.1 μg/m3 of coarse particles (CPM, diameter = 2.5 ? 10μm) and 15.9 μg/m3 of fine particles (FPM, diameter < 2.5 μm).

On a mass basis the most important constituents of the fine particulate fraction were sulfate compounds, 50 percent, and organic compounds, 30 percent. The mean light extinction coefficient corresponds to a visual range of 18-20 km. Most of the extinction can be attributed to the sulfate (60 percent) and organic carbon (13 percent). Particle size measurements show that the mass median aerodynamic diameter for both species is 0.43 μm. This is a typical size for a hydrated sulfate aerosol. For carbon, however, this is a larger size than previously reported and results in a more efficient light scattering aerosol. Principal component analyses indicate that coal combustion emissions from the midwestern U.S. are the most significant source of sulfate in Lewes during the summer and winter.  相似文献   

8.
This study identifies major contributing sources of high particulate matter (PM) days in Hong Kong and conducive meteorological conditions leading to high PM. The PM10 chemical composition of 3393 ambient samples collected at ten monitoring stations in Hong Kong during 1998–2005 were used as input for positive matrix factorization (PMF) modeling to identify and quantify the aerosol sources in Hong Kong. Days with PM10 levels exceeding 56 μg m?3, the average plus one standard deviation of the mass concentration of all samples, are defined as high PM days. A total of 401 samples fell in the high PM category during the study period. Biomass burning, secondary sulfate and secondary nitrate were found to be the major contributors leading to high PM, responsible for 68–73% of PM10 mass on high PM days. The contributions by these sources on high PM days were 140–180% higher than their respective average concentration contributions. These sources were identified to be regional sources on the grounds of little spatial variation in their concentrations among the monitoring stations and a temporal pattern of higher in the winter and lower in the summer. Sampling days of high PM in 2004 and 2005 were individually examined for weather charts and regional surface wind maps. Weak high pressures over mainland China were the most important synoptic event leading to high PM days in the fall and winter, while typhoon episodes were responsible for most summer cases. Approximately 80% of the high PM days were in the fall and winter months (September–February). Almost all the high PM days were associated with northwesterly, northerly or northeasterly regional transport. Anthropogenic primary sources (coal combustion, vehicular exhaust, and residue oil combustion) showed the highest contributions associated with northwesterly wind, indicating the strong influence of the more urbanized areas to the northwest of Hong Kong in the Pearl River Delta region.  相似文献   

9.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

10.
In this study, the seasonal variation of different types of particulates was investigated in a fixed roadside station in heavily trafficked urban area of Hong Kong. Aerosol samples for total suspended particles (TSP), PM10 and PM2.5 were collected from June 1998 to May 1999 at a roadside site. Meteorological conditions such as relative humidity (RH), rainfall and prevailing wind direction were found to affect the mass concentration of TSP, PM10 and coarse particulates at roadside level. Large size particles had an apparent seasonal variation, with higher concentration level in winter and lower in summer. The dry continental winter monsoon and the wet oceanic summer monsoon are the dominating factors. On the other hand, annual variation of PM2.5 is relatively insignificant, suggesting that they are mainly from local traffic emission. PM10 accounted for 62% of the TSP, while PM2.5 accounted for 46%. The annual PM2.5/PM10 is high with PM2.5 responsible for 74% of PM10. In our heavily trafficked roadside fixed site, TSP exceeded the annual average of the Hong Kong Air Quality Objective by a factor of 1.53 while PM10 exceeded by 1.39. The annual average concentration of PM2.5 exceeded the National Ambient Air Quality Standard (NAAQS) annual average of 15 μg m−3 by a factor of 3.8 and is a cause of concern. A total of the 24 h average PM2.5 exceeded NAAQS by 33%. According to our data reported, fine particulate pollution is serious in Hong Kong.  相似文献   

11.
This study characterized the dry deposition flux and dry deposition velocity (Vd) of metallic elements attached on particulate matter. Specifically, large particles (>10 μm), coarse particles (10 μm~2.5 μm), and fine particles (<2.5 μm) were studied at the Gong Ming Junior High School (Taichung Airport) and Taichung Harbor sampling sites in central Taiwan. Ambient air samples were collected to determine total suspended particulate matter (TSP), dry deposition plate (DDP), Vd, coarse particulate matter (PM2.5–10) and fine particulate matter (PM2.5), and metallic elements concentrations at the Airport and Taichung Harbor sites between June 17, 2013, and November 14, 2013. The results revealed that the average TSP, DDP, Vd, PM2.5–10, and PM2.5 particulate at the Airport were 54.55 (μg/m3), 902.25 (μg/m2-min), 17.11 (m/sec), 0.003 (μg/m3), and 0.010 (μg/m3), respectively; while these values at Taichung Harbor were 63.66 (μg/m3), 539.69 (μg/m2-min), 9.94 (m/sec), 0.003 (μg/m3), and 0.014 (μg/m3), respectively. In addition, the results showed that the average Cu and Pb concentrations were higher than Cr, Ni, and Cd for both the airport and harbor sampling sites. Furthermore, Cr, N, Cu, Cd, and Pb had the highest average concentrations versus those reported for other study areas, with one exception: The results obtained in Kacanik, Kosovo, during 2005. The average metallic elements concentrations order was Cu > Pb > Cr > Ni > Cd.  相似文献   

12.
The concentrations of ambient total suspended particulates (TSP) and PM2.5, and the dry depositions at a sample site at Luliao Junior High School (Luliao) in central Taiwan were measured during smog and non-smog days between December 2017 and July 2018. The results are compared to those obtained during non-smog periods in the years 2015–2017. The mean TSP and PM2.5 concentrations and dry deposition flux were 72.41?±?26.40, 41.88?±?23.51?μg/m3, and 797.57?±?731.46?μg/m2 min, respectively, on the smog days. The mean TSP and PM2.5 concentrations and dry deposition flux on the non-smog days were 56.39?±?18.08, 34.81?±?12.59?μg/m3 and 468.93?±?600.57?μg/m2 min, respectively. The mean TSP concentration in the smog period was 28% greater than that in the non-smog period, and the mean PM2.5 concentration was 20% higher. The mean dry deposition flux in the smog period was 70% higher than that in the non-smog period at Luliao. The PM2.5 concentrations exceeded the standards set by the Taiwan EPA (35?μg/m3 daily, and 15?μg/m3 annually). Therefore, the TSP and PM2.5 concentrations and dry deposition must be reduced in central Taiwan on smog days. In addition, atmospheric TSP and PM2.5 concentrations at various sampling sites were compared, and those herein were not higher than those measured in other countries. Finally, apart from the local traffic emissions, during smog periods, the other pollution source originated from the transportation process of traffic pollutants emitted in the northwest side of Taiwan.  相似文献   

13.
Temporal variations of atmospheric aerosol in four European urban areas   总被引:1,自引:0,他引:1  

Purpose

The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.

Methods

Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.

Results

The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 ??g/m3 in Helsinki to 56.7 ??g/m3 in Athens and from 9.0 ??g/m3 in Helsinki to 25.0 ??g/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?Conclusions Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.  相似文献   

14.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

15.
The objective of this study was to describe the ambient levels of particulate matter (PM) and its influence to air quality situation on the dry Mediterranean island of Cyprus. From October 2002 to August 2003 PM10 and PM2.5 samples were collected at 31 different sampling sites in Cyprus. In addition, continuous measurements of PM10 were carried out from 2003 to 2007 at a traffic and a rural site. It can be recognised that at all traffic and at some residential and urban background sites, the actual EU limit values have been exceeded. Special events e.g. long-range transport of Sahara dust storms were recorded over urban as well as rural areas in the order of 6–8 events per year, with a major frequency in summer and spring periods. The comparison of the PM10 concentrations in Cyprus cities with values of other European cities demonstrates the PM10 problem in Cyprus, especially in the dry summer season, when no rain is cleaning the air and the dry surfaces. This underlines the necessity of PM abatement strategies.  相似文献   

16.
Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m?3 (swine gestation in summer) to 10.9 ± 3.9 mg m?3 (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm?3) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤10 and ≤2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP’s particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

Implications: The concentration, size, and density of TSP samples varied greatly with animal species, housing facility type, feeder type, and season, suggesting that PM emission data derived from limited measurements may not be readily applied to estimate the overall emission from concentrated animal feeding operations (CAFOs). This study also affirmed that particles released from CAFOs is of relatively high density (~1.65 g cm?3) and with diameter mostly larger than 10 µm, indicating that regular PM abatement devices, such as cyclones, fabric filters, or even a simple downward-facing exhaust duct, may be employed to mitigate the TSP emission with acceptable efficiency.  相似文献   

17.
Aerosol samples (TSP and PM10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m?3 and 12 ng m?3 for TSP, 21 ng m?3 and 9 ng m?3 for PM10, respectively. Concentrations of Br and I in TSP and PM10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM10 extracted by a dilute acid solution (HNO3 + H2SO4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.  相似文献   

18.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m?3, with an average of 428 ± 399 ng m?3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl?, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%).

Implications:?PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.  相似文献   

19.
Abstract

There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155–mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from ~19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were ~9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM10 and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national–level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10–4% and 1.6 x 10–3% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

20.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号