首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Visibility impairment in the Columbia River Gorge National Scenic Area is an area of concern. A field study conducted from July 2003 to February 2005 was followed by data analysis and receptor modeling to better understand the temporal and spatial patterns of haze and the sources contributing to the haze in the Columbia River Gorge in the states of Washington and Oregon. The nephelometer light scattering and surface meteorological data at eight sites along the gorge showed five distinct wind patterns, each with its characteristic diurnal and spatial patterns in light scattering by particles (bsp). In summer, winds were nearly always from west to east (upgorge) and showed decreasing bsp with distance into the gorge and a pronounced effect of the Portland, OR, metropolitan area on haze, especially in the western portions of the gorge. Winter often had winds from the east with very high levels of bsp, especially at the eastern gorge sites, with sources east of the gorge responsible for much of the haze. The major chemical components responsible for haze were organic carbon, sulfate, and nitrate. Positive matrix factorization (PMF) using chemically speciated Interagency Monitoring of Protected Visual Environments data indicated seven source factors in the western gorge and five factors in the eastern gorge. Organic mass is a large contributor to haze in the gorge in all seasons, with a peak in fall. The PMF analysis suggests that approximately half of the organic mass is biomass smoke, with mobile sources as the second largest contributor. PMF analysis showed nitrates (important in fall and winter) mainly attributed to a generic secondary nitrate factor, with the next largest contributor being oil combustion at Mt. Zion, WA and mobile sources at Wishram, WA. Sulfate is a significant contributor in all seasons, with peak sulfate concentrations in summer.  相似文献   

2.
When an airshed is affected by a spatially complex distribution of emitting sources, the angular distribution of tracer fluxes about one or more receptor sites may usefully distinguish the relative contributions of different upwind sources at that site. Such “fluxgrams” complement chemical-mass-balance receptor models to assist decisions affecting optimum emission controls and receptor placement. The technique is illustrated here with Bsp/PM10 in a heavily industrialized valley where, surprisingly, fluxgram analyses show that winter haze exceedances are associated with nighttime winds draining into the industrial lower valley from an upwind residential community.  相似文献   

3.
PM2.5 sampling was conducted at a curbside location in Delhi city for summer and winter seasons, to evaluate the effect of PM2.5 and its chemical components on the visibility impairment. The PM2.5 concentrations were observed to be higher than the National Ambient Air Quality Standards (NAAQS), indicating poor air quality. The chemical constituents of PM2.5 (the water-soluble ionic species SO42-, NO3?, Cl?, and NH4+, and carbonaceous species: organic carbon, elemental carbon) were analyzed to study their impact on visibility impairment by reconstructing the light extinction coefficient, bext. The visibility was found to be negatively correlated with PM2.5 and its components. The reconstructed bext showed that organic matter was the largest contributor to bext in both the seasons which may be attributed to combustion sources. In summer season, it was followed by elemental carbon and ammonium sulfate; however, in winter, major contributions were from ammonium nitrate and elemental carbon. Higher elemental carbon in both seasons may be attributed to traffic sources, while lower concentrations of nitrate during summer, may be attributed to volatility because of higher atmospheric temperatures.

Implications: The chemical constituents of PM2.5 that majorly effect the visibility impairment are organic matter and elemental carbon, both of which are products of combustion processes. Secondary formations that lead to ammonium sulfate and ammonium nitrate production also impair the visibility.  相似文献   

4.
Optical, filter chemistry, and cascade impactor data collected during the winter intensive of the IMS95 Study in the San Joaquin Valley (SJV) of California were analyzed to determine the light-extinction efficiency of aerosol species. Regression of light scattering by particles (bsp) measured by a heated nephelometer without a size selective inlet against PM2.5 front filter mass gave a scattering efficiency of 3.67±0.05 m2/g with an R2 (fraction of variance explained) of 0.94. Division of the aerosol into two components and applying two different corrections to the filter data for nitrate and organic carbon on the backup filter gave scattering efficiencies of 3.7±0.3 or 4.1±0.2 m2/g for the salts composed of sulfate, nitrate, and ammonium and 2.9±0.2 or 3.1±0.2 m2/g for all other species with R2 of 0.985 and 0.986. The ambient bsp measured by an open nephelometer was a simple function of PM2.5 mass and relative humidity (RH), giving R2 of 0.90 and 0.88 for two different RH sensors. Variations in PM2.5 size distribution and composition did not have an important effect on ambient bsp. The RH data from each sensor were repeatable enough to show the existence of a simple dependence of aerosol water uptake on RH, but RH sensor calibration uncertainties prevented determining this dependence. Inversion of MOUDI cascade impactor data gave sulfate and nitrate mass median diameters (MMD) between 0.4 and 0.8 μm. Mie scattering calculations based on MOUDI data provided humidity-dependent extinction efficiencies for the principal aerosol chemical species. These efficiencies combined with particle filter data showed that ammonium nitrate was the dominant contributor to wintertime light extinction. Source apportionment showed that light extinction was dominated by emissions sources contributing to the formation of secondary species, especially nitrate. These wintertime data are not expected to apply to summertime in the SJV.  相似文献   

5.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was conducted in Big Bend National Park in 1999. The park is located in a remote region of southwest Texas but has some of the poorest visibility of any Class 1 monitored area in the western US. The park is frequently influenced by air masses carrying emissions from Mexico and eastern Texas. Continuous physical, optical and chemical aerosol measurements were performed in an effort to understand the sources of and contributions to haze in the park. As part of this characterization, dry aerosol size distributions were measured over the size range of 0.05<Dp<20 μm. Three instruments with different measurement techniques were used to cover this range. Complete size distributions were obtained from all of the instruments in terms of a common measure of geometric size using a new technique. Size parameters for accumulation and coarse particle modes were computed and demonstrate periods when coarse mode volume concentrations were significant, especially during suspected Saharan dust episodes in July and August. Study average (and one standard deviation) geometric volume mean diameters for the accumulation and coarse particle modes were 0.26±0.04 and 3.4±0.8 μm, respectively. Dry light scattering coefficients (bsp) were computed using measured size distributions and demonstrated periods when contributions to bsp from coarse particles were significant. The study average computed bsp was 0.026±0.016 km−1. Computed dry bsp values were highly correlated with measured values (r2=0.97). Real-time sulfate measurements were correlated with accumulation mode volume concentrations (r2=0.89) and computed dry light scattering coefficients (r2=0.86), suggesting sulfate aerosols were the dominant contributor to visibility degradation in the park.  相似文献   

6.
A two-year record of hourly concentrations of halocarbon tracers (methylchloroform and perchloroethylene) and hourly averages of particle light scattering (Bsp) has been analyzed In an effort to understand the sources of haze In the U.S. southwestern deserts and mountains. Measurements were taken on top of Spirit Mountain in southern Nevada. In conjunction with photographs used to interpret visual quality, haze episodes at Spirit Mountain were usually coincident with elevated concentrations of tracers originating from urban sources. Haze obscured an 88-km-distant mountain 17 percent of the total observation time. Of those Incidents, 69 percent were associated with long-range transport of haze from the Los Angeles Basin.  相似文献   

7.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   

8.
Fine particle composition data obtained at three sampling sites in the northeastern US were studied using a relatively new type of factor analysis, positive matrix factorization (PMF). The three sites are Washington, DC, Brigantine, NJ and Underhill, VT. The PMF method uses the estimates of the error in the data to provide optimal point-by-point weighting and permits efficient treatment of missing and below detection limit values. It also imposes the non-negativity constraint on the factors. Eight, nine and 11 sources were resolved from the Washington, Brigantine and Underhill data, respectively. The factors were normalized by using aerosol fine mass concentration data through multiple linear regression so that the quantitative source contributions for each resolved factor were obtained. Among the sources resolved at the three sites, six are common. These six sources exhibit not only similar chemical compositions, but also similar seasonal variations at all three sites. They are secondary sulfate with a high concentration of S and strong seasonal variation trend peaking in summer time; coal combustion with the presence of S and Se and its seasonal variation peaking in winter time; oil combustion characterized by Ni and V; soil represented by Al, Ca, Fe, K, Si and Ti; incinerator with the presence of Pb and Zn; sea salt with the high concentrations of Na and S. Among the other sources, nitrate (dominated by NO3) and motor vehicle (with high concentrations of organic carbon (OC) and elemental carbon (EC), and with the presence of some soil dust components) were obtained for the Washington data, while the three additional sources for the Brigantine data were nitrate, motor vehicle and wood smoke (OC, EC, K). At the Underhill site, five other sources were resolved. They are wood smoke, Canadian Mn, Canadian Cu smelter, Canadian Ni smelter, and another salt source with high concentrations of Cl and Na. A nitrate source similar to that found at the other sites could not be obtained at Underhill since NO3 was not measured at this site. Generally, most of the sources at the three sites showed similar chemical composition profiles and seasonal variation patterns. The study indicated that PMF was a powerful factor analysis method to extract sources from the ambient aerosol concentration data.  相似文献   

9.
Abstract

Speciated fine particulate matter (PM2.5) data collected as part of the Speciation Trends Network at four sites in the Midwest (Detroit, MI; Cincinnati, OH; Indianapolis, IN; and Northbrook, IL) and as part of the Interagency Monitoring of Protected Visual Environments program at the rural Bondville, IL, site were analyzed to understand sources contributing to organic carbon (OC) and PM2.5 mass. Positive matrix factorization (PMF) was applied to available data collected from January 2002 through March 2005, and seven to nine factors were identified at each site. Common factors at all of the sites included mobile (gasoline)/secondary organic aerosols with high OC, diesel with a high elemental carbon/OC ratio (only at the urban sites), secondary sulfate, secondary nitrate, soil, and biomass burning. Identified industrial factors included copper smelting (North–brook, Indianapolis, and Bondville), steel/manufacturing with iron (Northbrook), industrial zinc (North–brook, Cincinnati, Indianapolis, and Detroit), metal plating with chromium and nickel (Detroit, Indianapolis, and Bondville), mixed industrial with copper and iron (Cincinnati), and limestone with calcium and iron (Bondville). PMF results, on average, accounted for 96% of the measured PM2.5 mass at each site; residuals were consistently within tolerance (±3), and goodness–of–fit (Q) was acceptable. Potential source contribution function analysis helped identify regional and local impacts of the identified source types. Secondary sulfate and soil factors showed regional characteristics at each site, whereas industrial sources typically appeared to be locally influenced. These regional factors contributed approximately one third of the total PM2.5 mass, on average, whereas local mobile and industrial sources contributed to the remaining mass. Mobile sources were a major contributor (55–76% at the urban sites) to OC mass, generally with at least twice as much mass from nondiesel sources as from diesel. Regional OC associated with secondary sulfate and soil was generally low.  相似文献   

10.
We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area approximately 6000 km(2)), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55-67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.  相似文献   

11.
Twenty four-hour averaged concentrations of fine particulate matter were collected at Athens, OH between March 2004 and November 2005 in an effort to characterize the nature of PM2.5 and apportion its sources. PM2.5 samples were chemically analyzed and positive matrix factorization was applied to this speciation data to identify the probable sources. PMF arrived at a 7-factor model to most accurately apportion sources of the PM2.5 observed at Athens. Conditional probability function (CPF) and potential source contribution function (PSCF) were applied to the identified sources to investigate the geographical location of these sources. Secondary sulfate source dominated the contributions with a total contribution of 62.6% with the primary and secondary organic source following second with 19.9%. Secondary nitrate contributed a total of 6.5% with the steel production source and Pb- and Zn-source coming in at 3.1% and 2.9%, respectively. Crustal and mobile sources were small contributors (2.5% each) of PM2.5 to the Athens region. The secondary sulfate, secondary organic and nitrate portrayed a clear seasonal nature with the sulfate and secondary organic peaking in the warm months and the nitrate reaching a high in the cold months. The high percentage of secondary sulfate observed at a rural site like Athens suggests the involvement of regional transport mechanisms.  相似文献   

12.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

13.
A source apportionment study was conducted at two rural locations, Potsdam and Stockton, to assess the in-state/out-of-state sources of PM2.5 and Hg in New York State. At both locations, samples were collected between November 2002 and August 2005 and analyzed for fine PM mass and its chemical constituents. The measured chemical constituents included elements, cations, anions, organic and elemental carbon (OC and EC), black carbon (BC), and water-soluble short-chain (WSSC) organic acids. Positive matrix factorization (PMF) was applied to the measured concentrations and eight and seven factors were resolved at Potsdam and Stockton, respectively. Four factors were resolved in common between the two locations including secondary sulfate, secondary nitrate, secondary OC, and a crustal factor. The factor profiles of mixed industrial and motor vehicle factors resolved at Potsdam were different compared with the corresponding profiles for these factors at Stockton. A resuspended road salt factor was identified at Potsdam, while an aged sea salt factor was identified at Stockton. At Potsdam, a wood smoke factor was also resolved. Among the resolved factors, secondary sulfate was the highest contributor to the measured mass at both sites. Potential source contribution function (PSCF) analysis indicated the Ohio River Valley region as a common potential source region for this factor at both locations. For the secondary nitrate factor, at Potsdam PSCF analysis indicated the Midwestern US (NOx emissions), and the US farm belt (ammonia emissions) as potential source regions, while at Stockton, the Midwestern US (power plant NOx emissions) was indicated as a major potential source region.  相似文献   

14.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.  相似文献   

15.
Abstract

Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were sec ondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.  相似文献   

16.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

17.
Abstract

Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 × organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol.

Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

18.

Ambient PM2.5 is one of the major risk factors for human health, and is not fully explained solely by mass concentration. We examined the short-term associations of cause-specific mortality (i.e., all-cause, cardiovascular, and respiratory mortality) with the 15 chemical constituents and sources of PM2.5 in four metropolitan cities of South Korea during 2014–2018. We found transition metals consistently showed significant associations with all-cause mortality, while the effects of other constituents varied across the cities and for cause of death. Carbonaceous components strongly affected the all-cause, cardiovascular, and respiratory mortality in Daejeon. Secondary inorganic aerosols, SO42? and NH4+, showed significant associations with respiratory mortality in Gwangju. We also found the sources from which species closely linked to mortality generally increased the relative mortality risks. Heavy metal markers from soil or industrial sources were significantly associated with mortality in all cities. However, several sources influenced mortality despite their marker species not being significantly associated with it. Secondary nitrate and secondary sulfate sources were linked to mortality in DJ. This could be attributed to the deep inland location, which might have facilitated formation of secondary inorganic aerosols. In addition, primary sources including mobile and coal combustion seemed to have acute impacts on respiratory mortality in Gwangju. Our findings suggest the necessity of positive matrix factorization (PMF)-based approaches for evaluating health effects of PM2.5 while considering the spatial heterogeneity in the compositions and source contributions of PM2.5.

  相似文献   

19.
Abstract

Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from “other” directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.  相似文献   

20.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号