首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic model for a cycling adsorbent/photocatalyst combination for formaldehyde removal in indoor air (Chin et al. J. Catalysis 2006, 237, 29-37) was previously developed in our lab, demonstrating agreement with lab-scale batch operation data of other researchers (Shiraishi et al. Chem. Engineer. Sci. 2003, 58, 929-934). Model parameters evaluated included adsorption equilibrium and rate constants for the adsorbent (activated carbon) honeycomb rotor, and catalytic rate constant for pseudo-first-order formaldehyde destruction in the titanium dioxide photoreactor. This paper explores design consequences for this novel system. In particular, the batch parameter values are used to model both adsorbent and photocatalyst behavior for continuous operation in typical residential home challenges. Design variables, including realistic make-up air fraction, adsorbent honeycomb rotation speed, and formaldehyde source emission rate, are considered to evaluate the ability of the system to achieve World Health Organization pollutant guidelines. In all circumstances, the size of the required rotating adsorbent bed and photoreactor for single-stage operation and the resultant formaldehyde concentration in the home are calculated. The ability of how well such a system might be accommodated within the typical dimensions of commercial ventilation ducts is also considered.  相似文献   

2.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

3.
纳米TiO2/活性炭复合光催化剂的制备及其对甲醛气体降解   总被引:2,自引:2,他引:0  
研究了纳米TiO2/活性炭复合光催化剂对空气中典型污染气体甲醛的光催化降解特性。采用扫描电镜(SEM)表征复合催化剂的表面特征。结果显示,经改性后的纳米TiO2在复合催化剂表面分布均匀,呈球状。对甲醛气体的降解实验显示TiO2负载量为1%时对甲醛的去除效果最好,6 h去除率为61.7%。结果显示复合催化剂把甲醛气体分解成CO2,可以直接排空,无二次污染。  相似文献   

4.
ABSTRACT

The overall objective of this pilot-scale study is to investigate the technical feasibility of the removal and destruction of organic contaminants in water using adsorption and photocatalytic oxidation. The process consists of two consecutive operational steps: (1) removal of organic contaminants using fixed-bed adsorption; and (2) regeneration of spent adsorbent using photocatalysis or steam, followed by decontamination of steam condensate using photocatalysis. The pilot-scale study was conducted to evaluate these options at a water treatment plant in Wausau (Wisconsin) for treatment of groundwater contaminated with tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), toluene, ethylbenzene (EB), and xylenes. The adsorbents used were F-400 GAC and Ambersorb 563.

In the first treatment strategy, the adsorbents were impregnated with photocatalyst and used for the removal of aqueous organics. The spent adsorbents were then exposed to ultraviolet light to achieve photocatalytic regeneration. Regeneration of adsorbents using photocatalysis was observed to be not effective, probably because the impregnated photocatalyst was fouled by background organic matter present in the groundwater matrix.

In the second treatment strategy, the spent adsorbents were regenerated using steam, followed by cleanup of steam condensate using photocatalysis. Four cycles of adsorption and three cycles of steam regeneration were performed. Ambersorb 563 adsorbent was successfully regenerated using saturated steam at 160 °C within 20 hours. The steam condensate was treated using fixed-bed photo-catalysis using 1% Pt-TiO2 photocatalyst supported on silica gel. After 35 minutes of empty bed contact time, more than 95% removal of TCE, cis-DCE, toluene, EB, and xylenes was achieved, and more than 75% removal of PCE was observed.

In the case of activated carbon adsorbent, steam regeneration was not effective, and a significant loss in adsorbent capacity was observed.  相似文献   

5.
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.  相似文献   

6.
黑曲霉死菌与活性炭对直接耐晒翠蓝FBL的吸附性能   总被引:1,自引:0,他引:1  
采用批式实验,系统考察了黑曲霉死菌和活性炭的粉剂投加量,染料初始浓度,pH和反应时间对酞菁染料FBL脱色效果的影响;并采用扫描电镜图像,分析吸附剂的结构变化。结果表明,对于FBL染料的吸附处理,黑曲霉死菌粉剂与活性炭粉剂适宜的吸附条件为:酸性至弱碱性pH下,投加量为8 g/L;黑曲霉死菌粉剂比活性炭粉剂的吸附速度快、脱色性能高、抗染料浓度负荷冲击能力强。扫描电镜图像分析显示,黑曲霉死菌粉剂所具有的多层纤维结构为吸附染料分子提供较大的比表面。  相似文献   

7.
Abstract

A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-μm particles ranged from 1.5 hr?1 during operation of an in-duct, 5-in. pleated media filter to 7.2 hr?1 for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr?1 when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr?1 under baseline conditions, 0.5 hr?1 during operation of three portable ionic air cleaners, 1 hr?1 for an in-duct 1-in. media filter, 2.4 hr?1 for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr?1 for an in-duct 5-in. media filter, 4.7 hr?1 during operation of five portable HEPA filters, 6.1 hr?1 for a conventional in-duct electronic air cleaner, and 7.5 hr?1 for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.  相似文献   

8.
Reports by others1,2 have pointed to tobacco smoke as a significant source of air pollution in indoor spaces. Studies by Charlson, et al., 3 Kretzschmar,4 and Eccleston, et al. 5 have yielded mass concentration-light scattering correlations for several natural aerosols. This note presents a value for the mass concentration/ light scattering ratio for tobacco smoke. This ratio provides a means of assessing air quality in indoor spaces using an instrument with a fairly short (?1 min) time constant.  相似文献   

9.
Abstract

The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N, N‐diethyl‐2‐(1‐naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption‐desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300–450 nm wavelenght with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter *content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

10.
Abstract

Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC‐odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ‐I model and a MJ‐II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ‐I model, manure moisture movement was negligible, whereas in the MJ‐II model, time‐dependent indoor air concentrations was a function of constant manure moisture contents and steady‐state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC‐odors of p‐cresol, toluene, and p‐xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ‐I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.  相似文献   

11.
通过动态法测试水吸收型空气净化器A和活性炭过滤吸附型净化器B对甲醛的去除性能,探索更为合理的方法以评价空气净化器对气态污染物的去除性能.对净化器A去除甲醛的短期测试结果表明,净化器对甲醛浓度为0.3、0.5、0.8和1 mg/m3的连续空气流均有明显的净化效果,对甲醛的去除速率在0.91~2.78 mg/h之间.对净化...  相似文献   

12.
研究了纳米TiO2/活性炭复合光催化剂对空气中典型污染气体甲醛的光催化降解特性。采用扫描电镜(SEM)表征复合催化剂的表面特征。结果显示,经改性后的纳米TiO2在复合催化剂表面分布均匀,呈球状。对甲醛气体的降解实验显示TiO2负载量为1%时对甲醛的去除效果最好,6 h去除率为61.7%。结果显示复合催化剂把甲醛气体分解成CO2,可以直接排空,无二次污染。  相似文献   

13.
This work reports a preliminary design of a new photochemical reactor and its application to photochemical degradation of two dyes, Crystal Violet and Azure B, operating in both batch and continuous processes. A novel kind of photocatalyst, consisting of ZnO immobilised in alginate gel beads, which is able to photodegrade organic dyes effectively, has been employed in the present study. When this photocatalyst, at a concentration of 1 g of ZnO per litre of alginate gel at 3%, was employed in batch process, almost total decolourisation of Crystal Violet in reaction times lower than 120 min was observed. Operating in continuous process at different residence times, it was possible to achieve a total decolourisation of both Crystal Violet and Azure B. Moreover, the total organic carbon content (TOC) was reduced to 90% in the former and to 52% in the latter. These results indicated that the photoreactor developed in the present work was able to degrade effectively dyes of different structures, revealing the non-specificity of the system.  相似文献   

14.
Abstract

NOX control employing several combustion modification techniques is studied in batch annealing furnaces and ammonia combustion ovens in steel plants. The fuels of the annealing furnace and ammonia oven are by-product fuel gases and ammonia vapor, respectively, which are generated in the same steelworks. Study of the emission characteristics of the annealing furnace show that delayed combustion can effectively reduce NOX emissions. Delayed combustion is accomplished by air-staging in burners, off-symmetric mixing of fuel and air, and air-biasing in the furnace, and these modification can operations achieve 60%, 40%, and 26% of NOX reductions, respectively. For the ammonia oven, NOX emission from combustion of ammonia vapor is remarkably reduced by staging the air injected into the oven, adjusting the total air rate, and adding by-product fuel gases to the combustion system.  相似文献   

15.
A new analytical method was developed for the determination of formaldehyde in ambient air based on the use of a modified configuration of the Analyst® passive sampler. It consists of a polyethylene cylinder filled with appropriate reactive adsorbent and a special anti-turbulence net which works as an ozone scrubber.The performance of a diffusive sampler depends critically on the selection and use of a suitable adsorbent and on environmental factors, such as temperature, humidity and the interference of oxidant species. In this study two adsorbent types were investigated: 2,4-dinitrophenylhydrazine (2,4-DNPH) coated silica gel and Florisil® particles. Interference of ozone was removed by using a silver net upstream as an anti-turbulence device. The performance of this net was then compared with that of stainless steel. Furthermore, the aim of the work was the optimization of the adsorbent type and the study of the interference of ozone with particular attention placed on the effect of relative humidity and temperature.A dynamic system for generating a known concentration of the test gas (formaldehyde) in an appropriate exposure chamber was used to evaluate the performance of the passive sampler and to allow the calibration of the methodology. Inter-comparisons with a reference method, active sampling using 2,4-DNPH-silica gel coated cartridges, were also carried out. Results were in accordance with each other.Tests were planned using a statistical method based on Design of Experiment methodology. The operating conditions were chosen in order to obtain the best configuration of the passive device by evaluating the statistical significance of the different factors and their interactions by analysis of variance.Results showed that the best configuration was achieved using 2,4-DNPH Florisil® coated particles as an adsorbent and a silver anti-turbulence net as an ozone scrubber.With the aim of achieving further results in realistic conditions, some field experiments were also carried out.  相似文献   

16.
以大孔径SiO2为载体,通过钛酸丁酯溶液的浸渍、原位水解以及高温煅烧制备出大尺寸、大孔径的TiO2/SiO2光催化剂。利用自制空气净化装置对室内甲醛的清除进行研究,分别考察了TiO2的百分含量、紫外光光强、温度、湿度和空气流量等不同条件下TiO2/SiO2光催化剂对除去甲醛效率的影响。结果表明,反应温度从10~50℃依次升高,去除率逐渐下降。在相对湿度为50%,TiO2负载率为55.6%,流量为8 m3/h时,甲醛的最佳除去率达96.5%;经过7周时间的考察,发现TiO2/SiO2光催化剂的催化活性没有明显的下降。  相似文献   

17.
18.
A novel composite adsorbent (CA-T) was used for the selective removal of organochlorine pesticides (OCPs) from aqueous solution. The adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. Scanning electron microscopy (SEM), N2 adsorption isotherms and fluorescence methods were used to characterize the physicochemical properties of CA-T. Triolein was perfectly embedded in the cellulose acetate membrane and deposited on the surface of activated carbon. The adsorbent was stable in water and no triolein leakage was detected during the test periods. Some organochlorine pesticides (OCPs), such as dieldrin, endrin, aldrin, and heptachlor epoxide, were used as model contaminants and removed by CA-T in laboratory batch experiments. The adsorption isotherm followed the Freundlich equation and the kinetic data fitted well to the pseudo-second-order reaction model. Results also indicated that CA-T appeared to be a promising adsorbent with good selectivity and satisfactory removal rate for lipophilic OCPs from aqueous solutions when present in trace amounts. The adsorption rate and removal efficiency for lipophilic OCPs were positively related to their octanol-water partition coefficients (log K ow). Lower residual concentrations of OCPs were achieved when compared to granular activated carbon (GAC).  相似文献   

19.
Abstract

A high-efficiency particulate air (HEPA)-carbon filtration system was developed by the Access Business Group, LLC, to reduce the indoor levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The HEPA filter removes the particle-bound PCDD/Fs, and the carbon filter removes the gaseous fraction. Because of the toxicity of PCDD/Fs, it is very difficult to handle them in the laboratory. In this study, mathematical modeling was performed to evaluate the performance of the HEPA-carbon filtration system for PCDD/Fs removal and to optimize its design and operation. The model was calibrated with experimental data conducted with toluene in a sealed room. Model simulations with four selected congeners demonstrated that it takes ~1 hr for the indoor air treatment system to reach the maximum removal efficiency and that the carbon air filter has a life time of 107 yr for dioxin removal. Given a zero emission from the HEPA filter, the overall removal efficiency is 78.7% for 2,3,7,8-tetrachloro dibenzo-p-dioxins, 89.8% for octa-chlorodibenzodioxin, 78% for tetra-chlorodibenzofuran, and 89.8% for octachlorodibenzofuran. The larger the mass emission from the HEPA filter, the lower the overall removal efficiency, and the larger the ratio of the filter flow rate (Qf) to the room flow rate (Q), the higher the overall removal efficiency. When the ratio of Qf/Q is 15, an overall removal efficiency of 90% can be reached for all four of the selected compounds. The removal of the four selected compounds does not change as the relative humidity increases ≤90%.  相似文献   

20.
Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants’ responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated.

Implications: Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号