首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

2.
3.
ABSTRACT

The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain realtime estimates of fugitive VOC emission rates.  相似文献   

4.
ABSTRACT

Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30–90 min, 50% H2O(g)/50% N2), activated carbons with surface areas between 360 and 950 m2 g?1 were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin– Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.

IMPLICATIONS This paper presents data on the preparation of activated carbons from agricultural residues, especially the waste from biohydrogen generation. Experimental results indicated that with proper carbonization and steam activation, activated carbons with diverse characteristics can be produced from various agricultural residues. The resulting activated carbons effectively adsorb toluene. This work provides useful information for reutilization of these agricultural residues, helping in decreasing the cost of biological waste treatment and providing a cost-effective alternative to conventional adsorbent production and application.  相似文献   

5.
ABSTRACT

A laboratory thermal desorption apparatus was used to measure emissions from a number of nominally identical photocopier toners—manufactured to meet the specifications of one specific model copier—when these toners were heated to fuser temperature (180-200 °C). The objective was to assess how potential volatile organic compound (VOC) emissions from the toner for a given copier can vary, depending upon the production run and the supplier. Tests were performed on a series of toner (and associated raw polymer feedstock) samples obtained directly from a toner manufacturer, representing two production runs using a nonvented extrusion process, and on toner cartridges purchased from two local retailers, representing three different production lots (histories unknown). The results showed that the retailer toners consistently had up to 350% higher emissions of some major compounds (expressed as |ig of compound emit-ted/g of toner), and up to 100% lower emissions of others, relative to the manufacturer toners (p ≤ 0.01). The manufacturer toners from one production run had emissions of certain compounds, and of total VOCs, that were modestly higher (13-18%) than those from the other run (p ≤ 0.01). The emission differences between the retailer and manufacturer toners are probably due to differences  相似文献   

6.
Abstract

Volatile organlcs compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between ?41 and +22 percent; while the values between the passive and the active samplers varied between ?27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

7.
ABSTRACT

The design and the construction of an actual 8.7-m3 pilot/ full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas ~20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3 air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/ 1000 m3 air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

8.
Abstract

An improved photocatalytic oxidation (PCO) reactor model was developed to analyze the removal of volatile organic compounds (VOCs) in indoor air. One new parameter, the average total removing factor K t, together with the other two parameters, the number of mass transfer units NTUm and the fractional conversion e, are found to be the main parameters influencing the photooxidation performance of PCO reactors. Three new parameters, the ideal reaction number of mass transfer units, NTUm,ir; the ideal reaction fractional conversion, εir; and the reaction effectiveness, η, also are defined. These concepts are helpful to the structural design and optimization for PCO reactors. The application of the model in designing a plate-type PCO reactor is demonstrated. This study shows that the present model is an effective tool for designing PCO reactors and for evaluating VOC removal performance of available PCO reactors.  相似文献   

9.
Abstract

Grass, and particularly cut grass, recently has been shown to emit significant amounts of volatile organic compounds (VOCs) into the atmosphere. Some components of these emissions are highly reactive and may contribute to photochemical smog in urban areas. A simple model for estimating the VOC emissions from grass and for grass cutting that allows these processes to be included in urban/regional emissions inventories is presented here. Using previous work and recent literature values, estimates are made of these biogenic volatile organic compound (BVOC) emissions for two typical urban airsheds, those including the cities of Sydney and Melbourne in Australia. Grass and cut grass could contribute ~2% for Sydney and 3% for Melbourne of the total VOCs emitted into these urban atmospheres annually. These contributions could rise to 4 and 5%, respectively, during the weekends of the summer growing season and, thus, could contribute to weekday/weekend ozone differences. It is recommended that the emissions of BVOCs from grass and cut grass be included in urban and global emissions inventories so that more accurate predictions of smog chemistry can be determined.  相似文献   

10.
Abstract

This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for ~113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.  相似文献   

11.
A review of incineration techniques for control of volatile organic compound emissions is presented in two consecutive issues of JAPC A. Part I presents an overview of the process including fundamentals and design considerations. Both thermal and catalytic incincerators are considered. Part II will present capital and annual operating cost estimates for both thermal and catalytic incinerator systems based on information received from a number of equipment manufacturers.  相似文献   

12.
Abstract

Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppmv), methyl ethyl ketone (12 ppmv), toluene (29 ppmv), ethylbenzene (10 ppmv), and p-xylene (10 ppmv). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m?3 hr?1 and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

13.
Ambient ozone, sulfur dioxide, and nitrogen dioxide data collected at 11 rural gaseous air pollution monitoring stations located throughout the Federal Republic of Germany (FRG) were characterized to provide a basis for investigating the effect these air pollutants may have on forest decline. For any given year, with the exception of the Waldhof site, the ozone monitoring sites did not experience more than 50 occurrences of hourly mean concentrations equal to or above 0.10 ppm. In most cases, the number of occurrences equal to or above 0.10 ppm at the FRG ozone monitoring sites was below the number experienced at a rural forested site located at Whiteface Mountain, New York. Several of the FRG monitoring sites experienced a large number of occurrences of hourly mean ozone concentrations between 0.08 and 0.10 ppm. Hof, Selb, Arzberg, and Waldhof experienced several occurrences of elevated levels of sulfur dioxide concentrations. The nitrogen dioxide 24-h mean concentrations were low for all sites. Because the 24-h mean data may mask the occurrence of a few high concentration events, it is not known if any of the sites that monitored nitrogen dioxide experienced short-term elevated concentrations. To gain further insight into the possible effect of pollutant mixtures on vegetation, future efforts should involve characterizing the timing of multi-pollutant exposures.  相似文献   

14.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

15.
This article Introduces a technology for the simultaneous control of the emissions of PCDD/ PCDF, hydrochloric acid (HCI) and nitrogen oxides (NOx) from municipal solid waste (MSW) Incinerators. The technology uses ammonia as the control medium for all three pollutants. In this paper, the theoretical basis of the technology Is discussed. In addition, a bench-scale experiment proving the theory Is described and the practical application of the theory Is presented. Finally, further steps which are being taken to develop the technology for commercial application are detailed.  相似文献   

16.
Black carbon (BC) in surface sediments from Henan section of Yellow River and Huaihe River, China, was determined. Average content of BC in Huaihe River was 0.33%, higher than that in Yellow River (n?=?23) with mean value of 0.15%. Distribution patterns of BC in Yellow River and Huaihe River were similar, namely that tributaries had higher BC content than main stream. In addition, BC content in the mainstream of Yellow River and Huaihe River decreased with altitude. The BC content presented a significant positive correlation with clay (r?=?0.672; p?<?0.01) content in Yellow River, while neither did in Huaihe River. The ratio of BC/TOC ranged from 1.8–57.4% (median 29.6%), evidencing pyrogenic fossil fuel source of BC in Yellow River. Relatively low values of BC/TOC in Huaihe River (5.3%–28.8%, median 7.5%,) reflected that the origin of BC is from burning of biomass. In addition, Pearson rank correlation analysis showed that BC was in strong correlation with lighter PAH in Yellow River, while BC was in significant correlation with heavier PAH in Huaihe River. The ratio of BC/TOC indicated that BC in Yellow River mainly came from fossil fuel combustion, while BC in Huaihe River was primarily from biomass burning.  相似文献   

17.
This article describes the development of the Ammonia Injection Technology (AIT), a technology for the simultaneous control of the emissions of PCDD/PCDF (polychlorinated p-dibenzodioxins and polychlorinated dibenzofurans), HCI, SO2 and NOX from municipal solid waste incinerators. It briefly reviews the theoretical basis of the technology and the bench-scale and pilot-scale experiments. It describes the results of the pilot-scale experiment in detail and reports on the finding that the formation of PCDD and PCOF takes place in different regions of the boiler system. Finally, a concept is introduced for the treatment of emission control residues which could lead to the recovery of chlorine from waste products and its “recycle” to the chlorine manufacturing process (“closed chlorine life cycle“ concept).  相似文献   

18.
Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号