首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although vapor monitoring is generally a component of remedial action activities, most sites do not have routine gaseous releases or vapor clouds erupting from the soil during implementation of the cleanup process (or during cleanup of the site). At the North Carolina State University Lot 86 National Priorities List Site, over 8410 m3 (11,000 yd3) of chemical waste was disposed at the Site, including organic solvents and shock-sensitive and air- and water-reactive compounds. During the Remedial Action, it was imperative to protect site workers and off-site populations from potential inhalation exposures. Engineering controls were incorporated into the shallow soil mixing process to limit the release of gaseous compounds. To quantify potential exposures to on-site and off-site receptors, modeling was conducted to evaluate potential exposure routes and migration pathways. To demonstrate acceptable levels of airborne constituents, a multifaceted air sampling and monitoring program was implemented. To ensure that potential exposures could be quantified, passive dosimeters, continuous real-time monitoring, time-weighted whole air sampling, and grab samples of vapor clouds were all critical components of the air monitoring program. After the successful completion of the Remedial Action, the pre-Resource Conservation and Recovery Act (RCRA) chemical waste generated from the University's educational and research laboratories was entirely encapsulated and neither on-site workers nor off-site populations were exposed to analyzed compounds above any health-based action level (i.e., 15-min short-term exposure limit [STEL], 8-hr threshold limit value, or time-weighted average permissible exposure limit).  相似文献   

2.
Petroleum coke or “petcoke” is a solid material created during petroleum refinement and is distributed via transfer facilities that may be located in densely populated areas. The health impacts from petcoke exposure to residents living in proximity to such facilities were evaluated for a petcoke transfer facilities located in Chicago, Illinois. Site-specific, margin of safety (MOS) and margin of exposure (MOE) analyses were conducted using estimated airborne and dermal exposures. The exposure assessment was based on a combined measurement and modeling program that included multiyear on-site air monitoring, air dispersion modeling, and analyses of soil and surfaces in residential areas adjacent to two petcoke transfer facilities located in industrial areas. Airborne particulate matter less than 10 microns (PM10) were used as a marker for petcoke. Based on daily fence line monitoring, the average daily PM10 concentration at the KCBX Terminals measured on-site was 32 μg/m3, with 89% of 24-hr average PM10 concentrations below 50 μg/m3 and 99% below 100 μg/m3. A dispersion model estimated that the emission sources at the KCBX Terminals produced peak PM10 levels attributed to the petcoke facility at the most highly impacted residence of 11 μg/m3 on an annual average basis and 54 μg/m3 on 24-hr average basis. Chemical indicators of petcoke in soil and surface samples collected from residential neighborhoods adjacent to the facilities were equivalent to levels in corresponding samples collected at reference locations elsewhere in Chicago, a finding that is consistent with limited potential for off-site exposure indicated by the fence line monitoring and air dispersion modeling. The MOE based upon dispersion model estimates ranged from 800 to 900 for potential inhalation, the primary route of concern for particulate matter. This indicates a low likelihood of adverse health effects in the surrounding community.?Implications: Handling of petroleum coke at bulk material transfer facilities has been identified as a concern for the public health of surrounding populations. The current assessment, based on measurements and modeling of two facilities located in a densely populated urban area, indicates that petcoke transport and accumulation in off-site locations is minimal. In addition, estimated human exposures, if any, are well below levels that could be anticipated to produce adverse health effects in the general population.  相似文献   

3.
Twelve U.S. universities performing hazardous waste solvent commingling operations were surveyed for waste handler exposures to 45 U.S. Environmental Protection Agency (EPA)-designated volatile organic compounds (VOCs). Personal exposures (n = 33) and area concentrations (n = 30) were determined using gas chromatography/ mass spectrometry (GC/MS) analysis of passively collected samples. Air monitoring data were used to determine the veracity of laboratory-generated reports of waste container contents. Participants completed a questionnaire concerning the use of personal protective equipment, ventilation, and other appropriate safety equipment for their specific commingling operation. Follow-up telephone interviews were conducted to elucidate safeguards in place. Results showed that personal exposures exceeded area concentrations in 70% of operations. For the contaminant concentrations reported, 17% of personal samples exceeded Occupational Safety & Health Administration (OSHA) time-weighted average or ceiling limit values. Methylene chloride was a frequently seen airborne contaminant not listed on drum inventory sheets. When airborne constituents were compared with container content tags, 44% of the chemicals detected in air were omitted from the waste tags. This study concluded that the most frequently necessary safeguard is respiratory protection, preferably a supplied-air-type. The use of local exhaust ventilation systems rather than dilution or natural systems and facility operation in a totally explosion-safe manner are also recommended.  相似文献   

4.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

5.
Gas samples and total suspended particle during work and off work time were investigated on-site and off-site electronic waste dismantling workshop (I- and O-EWDW), then compared with plastic recycling workshop (PRW) and waste incineration plant (WIP). TSP concentrations and total PBDE were 0.36-2.21 mg/m3 and 27-2975 ng/m3 at different workshops, respectively. BDE-47, -99, and -209 were major ∑PBDE congeners at I-EWDW and WIP, while BDE-209 was only dominant congener in PRW and control sites during work time and all sites during off work time. The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for all samples, except for WIP and I-EDWD, at park during work time, and residential area during off work time. The predicted urban curve fitted well with measured φ values at O-DEWD during work time, whereas it was slightly overestimated or underestimated for others. Exposure assessment revealed the highest exposure site was I-EDWD.  相似文献   

6.
Conservative models were used to estimate the airborne concentrations of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) vapor and particulates originating from soil containing 100 ppb TCDD. The upper-bound estimates were 3.25 pg/m3 of airborne TCDD vapor on-site and 0.51 pg/m3 for TCDD vapor 100 meters downwind. The TCDD air concentration on-site due to suspended particulate is estimated to be 1.4 pg/m3, based on a TSP level of 0.07 mg/m3. Assuming 70 years of continuous exposure to these concentrations, the upper-bound cancer risks determined from the Jury model were estimated to be 9.4 × 10−6 to 1.1 × 10−4 and 1.5 × 10−6 to 1.7 × 10−5 for inhalation of on- and off-site vapor, respectively, and 4.1 × 10−6 to 4.6 × 10−5 for dust inhalation. Since few sites have average soil concentrations as high as 100 ppb TCDD, this worst-case analysis indicates that inhalation will rarely, if ever, be a significant route of exposure to TCDD-contaminated soil. Experimental results support this claim and point to much lower risk estimates (8.4 × 10−9 to 9.9 × 10−8), suggesting that the parameters used in the Jury model are likely to overestimate the actual airborne levels of TCDD at contaminated sites.  相似文献   

7.
Some organic compounds (alkylbenzene, chlorinated hydrocarbons and poiycyclic aromatic hydrocarbons) in clouds have been determined from samples collected above the canopy of a coniferous forest. The cloud samples were collected during 1987 and 1988 at Mt. Mitchell State Park, North Carolina, a remote high elevation (~2006 m MSL) continental site. Concentrations of the organic chemicals in clouds were in the range of 0.2 to ~200 ng mL-1; and their estimated deposition rates via clouds were found to range from 1.58 * 104 to 4.67 * 106 ng m-2 yr-1. Great variations in concentrations were found which can best be explained, based on 72 hour back trajectory analysis, by different source locales and moving air masses. The concentration of these chemicals exceeded their water solubility as predicted by Henry's Law, suggesting that clouds are an excellent scavenger of organic chemicals in the ambient environment.  相似文献   

8.
Investigation, mitigation, and clean-up of hazardous materials at Superfund sites normally requires on-site workers to perform hazardous and sometimes potentially dangerous functions. Such functions include site surveys and the reconnaissance for airborne and buried toxic environmental contaminants. Airborne contaminants of concern usually emanate from spilled materials and require monitoring the air at the perimeter and throughout the clean-up site to ascertain the extent of contamination. Buried contaminants of major concern are often the result of leaking underground drums containing toxic wastes and require "reconnaissance excavations" to determine their location. Workers conducting on-site air monitoring risk dermal, ocular and inhalation exposure to hazardous chemicals, while those performing excavations also risk the potential exposure to fire, explosion, and other physical injury. EPA's current efforts to protect its workers and mitigate these risks include the use of robotic devices. Using robots offers the ultimate in personnel protection by removing the worker from the site of potential exposure, especially during site investigations, when there is almost always a certain encounter with unknown chemical wastes having unknown toxicity.

This paper describes the demonstration of a commercially-available robotic plat form modified and equipped for air monitoring and the ongoing research for the development of a ground penetrating radar (GPR) system to detect buried chemical waste drums. These robotic devices can ultimately be routinely deployed in the field for the purpose of conducting inherently safe reconnaissance activities during Superfund / SARA remedial operations.  相似文献   

9.
Personal exposure models for sulfates (SO4 =) and aerosol strong acidity (H+) were previously developed using concentration and activity pattern data collected from a personal monitoring study conducted in Uniontown, Pennsylvania, during the summer of 1990. Models were constructed based on time-weighted microenvironmental exposures. For SO4 =, the “best-fit” model included a correction factor, while for H+, it included both a correction factor and a neutralization term.

In this paper, we present the validation of these models using data collected in a personal monitoring study conducted in State College, Pennsylvania, during the summer of 1991. Indoor and outdoor concentration and activity pattern data collected in this study were used as inputs for the “best-fit” models for SO4 = and H+. Predicted personal exposures subsequently were compared to the measured personal exposures from State College to determine their accuracy and precision.

Predicted personal exposures for both SO4 = and H+ were in excellent agreement with measured personal exposures from State College. The models explained 91 and 62 percent of the variability in personal SO4 = and H+ exposures, respectively, and were able to estimate personal exposures substantially better than outdoor concentrations alone. Validation results suggest that the models' correction and neutralization factors are not site specific and support the models' future application as a technique to assess the personal acid aerosol exposures of children living in similar rural and semi-rural communities.  相似文献   

10.
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant’s chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NOx], sulfur dioxide [SO2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts.

Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments.  相似文献   


11.
GOAL, SCOPE AND BACKGROUND: This paper uses two case studies of U.S. Department of Energy nuclear weapons complex installations to illustrate the integration of expedited site characterization (ESC) and multimedia modeling in the remedial action decision making process. CONCEPTUAL SITE MODELS, MULTIMEDIA MODELS, AND EXPEDITED SITE CHARACTERIZATION: Conceptual site models outline assumptions about contaminates and the spatial/temporal distribution of potential receptors. Multimedia models simulate contaminant transport and fate through multiple environmental media, estimate potential human exposure via specific exposure pathways, and estimate the risk of cancer and non-cancer health outcomes. ESC relies on using monitoring data to quantify the key components of an initial conceptual site model that is modified iteratively using the multimedia model. CASE STUDIES: Two case studies are presented that used the ESC approach: Los Alamos National Laboratory (LANL) and Pantex. LANL released radionuclides, metals, and organic compounds, into canyons surrounding the facility. The Pantex Plant has past waste management operations which included burning chemical wastes in unlined pits, burying wastes in unlined landfills, and discharging plant wastewaters into on-site surface waters. CONCLUSIONS: The case studies indicate that using multimedia models with the ESC approach can inform assessors about what, where, and how much site characterization data needs to be collected to reduce the uncertainty associated with risk assessment. Lowering the degree of uncertainty reduces the time and cost associated with assessing potential risk and increases the confidence that decision makers have in the assessments performed.  相似文献   

12.
The problem of contamination to land and groundwater from improper handling of hazardous materials/ waste is faced by all countries. Also, the need for reliable, cost-effective technologies to address this problem at contaminated sites exists throughout the world. Many countries have only started to develop new innovative/ alternative technologies while others have already started to apply these technologies to the cleanup of contaminated sites. The purpose of this NATO/ CCMS (North Atlantic Treaty Organization/Committee for the Challenges to Modern Society) Pilot Study is to discuss and evaluate new innovative/alternative technologies and/or existing systems that may be applicable to the cleanup of contaminated sites. Through this pilot study, the exchange of information on new and existing technologies for dealing with problem hazardous waste sites is promoted. The pilot study is made up of an international group of experts drawn from the participating countries. The study, which was initiated in 1986, is planned to last five years. It is piloted by the United States and copiloted by the Federal Republic of Germany (FRG) and The Netherlands.

This report includes an overview and history of the NATO/CCMS Pilot Study, but it primarily presents a documentation of the NATO/CCMS Second International Conference on the Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater held in Bilthoven, The Netherlands on November 7-11,1988.  相似文献   

13.
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

14.
This study was conducted to derive receptor-specific outdoor exposure concentrations of total suspended particulate (TSP) and respirable (dae ≤ 10 µm) air manganese (air-Mn) for East Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air measurements were available. Our “site-surface area emissions method” used U.S. Environmental Protection Agency’s (EPA) AERMOD (AMS/EPA Regulatory Model) dispersion model and air measurement data to estimate concentrations for residential receptor sites in the two communities. Modeled concentrations were used to create ratios between receptor points and calibrated using measured data from local air monitoring stations. Estimated outdoor air-Mn concentrations were derived for individual study subjects in both towns. The mean estimated long-term air-Mn exposure levels for total suspended particulate were 0.35 μg/m3 (geometric mean [GM]) and 0.88 μg/m3 (arithmetic mean [AM]) in East Liverpool (range: 0.014–6.32 μg/m3) and 0.17 μg/m3 (GM) and 0.21 μg/m3 (AM) in Marietta (range: 0.03–1.61 μg/m3). Modeled results compared well with averaged ambient air measurements from local air monitoring stations. Exposure to respirable Mn particulate matter (PM10; PM <10 μm) was higher in Marietta residents.

Implications: Few available studies evaluate long-term health outcomes from inhalational manganese (Mn) exposure in residential populations, due in part to challenges in measuring individual exposures. Local long-term air measurements provide the means to calibrate models used in estimating long-term exposures. Furthermore, this combination of modeling and ambient air sampling can be used to derive receptor-specific exposure estimates even in the absence of source emissions data for use in human health outcome studies.  相似文献   

15.
There is a lack of data for health risk assessment of long term personal exposure to certain ubiquitous air pollutants present particularly in urban atmospheres. The relationship between ambient background concentrations and personal exposure is often unknown. A pilot campaign to measure indoor concentrations, outdoor concentrations and personal exposure to benzene, formaldehyde and acetaldehyde was conducted in a medium sized French town. A strong contribution to total personal exposure was observed from indoor sources, especially for formaldehyde and acetaldehyde, suggesting that indoor sources are dominant for these compounds. For benzene, the average personal exposure exceeded a 10 μgm?3 limit value, although this was not the case for the ambient background concentration. For formaldehyde, the limit level was also exceeded. Observations suggest that true personal exposure cannot be determined directly from measurements pertaining from fixed ambient background monitoring stations. It is hoped that this will be taken into consideration by the bodies responsible for monitoring air pollution and the future European Air Quality Directive.  相似文献   

16.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

17.
This study examined serum levels of 2,3,7,8-substituted chlorinated dioxins and furans, and 15 PCBs for 346 New Zealand employees who worked at a site that manufactured 2,4,5-trichlorophenol (TCP) and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T). Participants with potential TCP or 2,4,5-T exposures had mean lipid-adjusted 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) levels of 9.9 ng kg−1 lipid compared to 4.9 ng kg−1 for workers with no exposure at the site. Among exposed workers, we found evidence of differences in 2,3,7,8-TCDD levels by department and duties. Workers involved in an accidental release had the highest mean 2,3,7,8-TCDD levels, 37.9 ng kg−1, followed by workers in the trichlorophenol plant, 23.4 ng kg−1. Workers with potential intermittent exposures to 2,3,7,8-TCDD in construction, maintenance, mechanics, and transport had 2,3,7,8-TCDD levels above New Zealand background levels of 3.9 ng kg−1, indicating workplace exposures. Among participants with work history indicating no 2,3,7,8-TCDD exposures, we observed some individuals with 2,3,7,8-TCDD levels above background levels. However, in most cases, these workers reported workplace exposures not recorded on their work histories or held other jobs with the potential for 2,3,7,8-TCDD exposures outside the plant. All other dioxin, furan, and PCB levels were similar among the exposed and unexposed workers.  相似文献   

18.
Abstract

The assessment of personnel exposure to volatile solvent vapors is an important aspect in any comprehensive health and safety program. This is particularly true at Treatment, Storage, and Disposal Facilities (TSDFs) and for industries dealing with volatile solvents. This paper presents organic vapor monitoring data from seven TSDFs and from several routine small business and household activities. It shows that proper controls at TSDFs effectively reduce personnel vapor exposure. Through an examination of data from a specialized business such as a TSDF, along with data from more routine activities, a different perspective arises regarding potential hazards associated with hazardous waste disposal activities.  相似文献   

19.
A comprehensive assessment of indoor carbonyl compounds for the academic staff, workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 × 10?6) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China.
Implications:A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers’ health and safety. No similar study has been carried out in China.  相似文献   

20.
In researching health effects of air pollution, pollutant levels from fixed-site monitors are commonly assigned to the subjects. However, these concentrations may not reflect the exposure these individuals actually experience. A previous study of ozone (O3) exposure and lung function among shoe-cleaners working in central Mexico City used fixed-site measurements from a monitoring station near the outdoor work sites as surrogates for personal exposure. The present study assesses the degree to which these estimates represented individual exposures. In 1996, personal O3 exposures of 39 shoe-cleaners working outdoors were measured using an active integrated personal sampler. Using mixed models, we assessed the relationship between measured personal O3 exposure and ambient O3 measurements from the fixed-site monitoring station. Ambient concentrations were approximately 50 parts per billion higher, on average, than personal exposures. The association between personal and ambient O3 was highly significant (mixed model slope p < 0.0001). The personal/ambient ratio was not constant, so use of the outdoor monitor would not be appropriate to rank O3 exposure and evaluate health effects between workers. However, the strong within-worker longitudinal association validates previous findings associating day-to-day changes in fixed-site O3 levels with adverse health effects among these shoe-cleaners and suggests fixed-site O3 monitors may adequately estimate exposure for other repeated-measure health studies of outdoor workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号