首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

2.
Abstract

The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA’s Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days may be appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

3.
This study reports ambient concentrations of 63 air toxics that were measured in Canada by the National Air Pollution Surveillance (NAPS) program over the period 2009–2013. Measured concentrations are compared with ambient air quality guidelines from Canadian jurisdictions, and compounds that exceeded guidelines are identified and discussed. Although this study does not assess risk or cumulative effects, air toxics that approached guidelines are also identified so that their potential contribution to ambient air toxics pollution can be considered. Eleven air toxics exceeded at least one guideline, and an additional 16 approached guidelines during the study period. Four compounds were measured using methods whose detection limits exceeded a guideline value, three of which could not be compared with guidelines, since they were not detected in any samples. The assessment of several metal(loid) concentrations is tentative, since they were measured only in fine particulate matter (PM) but compared with guidelines based on coarse or total PM. Improvements to sampling and analysis techniques for the latter compounds as well as for those whose methods are subject to known uncertainties would improve confidence in reported concentrations and their relation to applicable guidelines. Analysis of sampling strategies for all compounds found to exceed or approach guidelines would contribute to ensuring that their spatiotemporal coverage is adequate. Examination of the air toxics not measured by NAPS but having guidelines in Canadian jurisdictions or being included in other programs such as the U.S. National-Scale Air Toxics Assessment (NATA) would contribute to ensuring that the full suite of pollutants relevant to ambient air quality in Canada is subject to adequate study. The results of this study can be applied to evaluating the effectiveness of toxic substances management in Canada.

Implications: Recent measurements of 63 air toxics in Canada by the National Air Pollution Surveillance (NAPS) program showed that 11 compounds exceeded daily or annual ambient air quality guidelines and that an additional 16 compounds approached such guidelines within an order of magnitude. The results of this study can be applied to evaluating the effectiveness of toxic substances management in Canada and to identifying compounds that merit further investigation.  相似文献   

4.
The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA's Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days maybe appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

5.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   

6.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

7.
This paper describes a portable, low-cost whole air sampler capable of collecting 12 1-L samples in tedlar bags and using a single "D" cell for power. The results are presented from two tests of an intensive sampling and analysis method for measuring ambient carbon monoxide (CO) concentrations in urban areas using this sampler. The method is evaluated in comparison with an approved continuous CO analyzer, in intercomparisons of the results of re-analysis of the samples, and by examination of the results from co-located samplers. The precision of the analytical method was found to be +/-0.30 ppmv. The precision of the sampling method was found to be +/-0.73 ppmv and therefore is the limiting factor in the method's overall precision. These values are sufficient to verify attainment of National Ambient Air Quality Standards (NAAQS) levels in urban areas. Improvements in the sampler and analytical procedure are discussed.  相似文献   

8.
Abstract

The purpose of this paper is to demonstrate how to develop an air pollution monitoring network to characterize small-area spatial contrasts in ambient air pollution concentrations. Using residential woodburning emissions as our case study, this paper reports on the first three stages of a four-stage protocol to measure, estimate, and validate ambient residential woodsmoke emissions in Vancouver, British Columbia. The first step is to develop an initial winter nighttime woodsmoke emissions surface using inverse-distance weighting of emissions information from consumer woodburning surveys and property assessment data. Second, fireplace density and a compound topo-graphic index based on hydrological flow regimes are used to enhance the emissions surface. Third, the spatial variation of the surface is used in a location-allocation algorithm to design a network of samplers for the woodsmoke tracer compound levoglucosan and fine particulate matter. Measurements at these network sites are then used in the fourth stage of the protocol (not presented here): a mobile sampling campaign aimed at developing a high-resolution surface of woodsmoke concentrations for exposure assignment in health effects studies. Overall the results show that relatively simple data inputs and spatial analysis can be effective in capturing the spatial variability of ambient air pollution emissions and concentrations.  相似文献   

9.
Abstract

This paper reports on the performance of the Kimoto 180 sampler and the Wedding ambient PM10 beta gauge sampler. Monodisperse ammonium fluorescein test particles were generated in the laboratory and used to determine the penetration curve of the Kimoto 180 cyclonic inlet. It was found that the actual DpaSOof the Kimoto 180 inlet, 3.5 (xm, is much lower than the designated standard value, 10 um. In the field test, the two beta gauge samplers were collocated with an Andersen SA1200 high-volume sampler to compare their measured daily average PM10 concentrations.

The low Dpa50 of the Kimoto 180 inlet serves to explain why its daily average PM10 concentrations were much lower than the actual PM10 concentrations found in the field study. In addition, the PM10 concentrations of the Kimoto 180 beta gauge sampler were found to be seriously affected by the water vapor content of the ambient air. In contrast, the daily average PM10 concentrations of the Wedding beta gauge sampler were found to be more accurate, and influences by ambient conditions were insignificant  相似文献   

10.
Abstract

A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

11.
Abstract

This study presents the Individual Based Exposure Modeling (IBEM) application of MENTOR (Modeling ENvironment for TOtal Risk studies) in a hot spot area, where there are concentrated local sources on the scale of tens to hundreds of meters, and an urban reference area in Camden, NJ, to characterize the ambient concentrations and personal exposures to benzene and toluene from local ambient sources. The emission-based ambient concentrations in the two neighborhoods were first estimated through atmospheric dispersion modeling. Subsequently, the calculated and measured ambient concentrations of benzene and toluene were separately combined with the time-activity diaries completed by the subjects as inputs to MENTOR/IBEM for estimating personal exposures resulting from ambient sources. The modeling results were then compared with the actual personal measurements collected from over 100 individuals in the field study to identify the gaps in modeling personal exposures in a hot spot. The modeled ambient concentrations of benzene and toluene were generally in agreement with the neighborhood measurements within a factor of 2, but were underestimated at the high-end percentiles. The major local contributors to the benzene ambient levels are from mobile sources, whereas mobile and stationary (point and area) sources contribute to the toluene ambient levels in the study area. This finding can be used as guidance for developing better air toxic emission inventories for characterizing, through modeling, the ambient concentrations of air toxics in the study area. The estimated percentage contributions of personal exposures from ambient sources were generally higher in the hot spot area than the urban reference area in Camden, NJ, for benzene and toluene. This finding demonstrates the hot spot characteristics of stronger local ambient source impacts on personal exposures. Non-ambient sources were also found as significant contributors to personal exposures to benzene and toluene for the population studied.  相似文献   

12.
A comprehensive air toxics measurements program designed to establish baseline concentrations of atmospheric polychlorinated dioxins and dibenzofurans (PCDDs/PCDFs) in the South Coast Air Basin has been completed. The program utilized state-of-the-art air sampling and laboratory analysis techniques (HRGC/HRMS) to quantify the fifteen 2,3,7,8-substituted PCDDs/PCDFs congeners of primary toxicological significance. This study, which included nine discrete sampling sessions between December 1987 and March 1989, provides the first systematic assessment of ambient PCDDs/PCDFs concentrations in the state of California. The highest PCDDs/PCDFs concentrations noted during this study occurred in December 1987. This period was dominated by off-shore air flows, suggesting a regional air mass and transport phenomena. Concentrations of the PCDDs/PCDFs were diminished markedly in subsequent sampling sessions where air flow patterns were primarily of on-shore or of coastal origin. Ambient PCDDs/PCDFs concentrations, expressed as toxic equivalents, were highest during the December 1987 sampling period. The El Toro monitoring site, located approximately 40 miles southeast of Los Angeles, consistently showed the lowest measured ambient PCDDs/PCDFs concentrations and toxic equivalents values. In the majority of the sessions and samples examined the PCDDs/PCDFs congener profiles strongly suggest combustion source influences. Typical of combustion source profiles, 1,2,3,4,6,7,8-HpCDD was the predominant 2,3,7,8-substituted species and most prevalent PCDD after OCDD. The congener of highest toxicological significance, 2,3,7,8-TCDD, was reported below the 10-20 fg/m3 detection limit for most of the ambient air samples selected for analysis.  相似文献   

13.
ABSTRACT

The size range of airborne particles that is closely related to specific deposition regions in the human respiratory tract and excess lung burden of these deposited particles is associated with disease. Size-selective sampling, therefore, needs to be performed to assess the related health risks. Performance criteria applied to these samplers must be well characterized in order to provide accurate and reliable results. The PM10 samplers that have been used in place of the total suspended particulate samplers for the collection of ambient air particles are more relevant to potential inhalation hazards. In order to be certified, a PM10 sampler must meet reliable performance specifications, primarily the aerosol penetration test with liquid and solid particles in a wind tunnel (wind speeds of 2, 8, and 24 km/hr). This testing is intended to assure reasonable accuracy in aerosol measurements. However, the sampler performance under calm air conditions has not been well studied.

In the present study, the sampling heads of three devices—the Harvard impactor, the Personal Environmental Monitor (PEM), and the Sierra Andersen model 241 dichotomous sampler PM10 inlet head—were tested for aerosol separation efficiency. With the consideration of bias and imprecision of the measurements, five specimens of each type of sampler were chosen for performance testing, repeating the tests 5 times for each specimen. An ultrasonic atomizing nozzle was used to nebulize potassium sodium tartrate tetrahydrate and dioctyl phthalate particles as the solid and liquid challenge aerosols, respectively. The aerosol number concentrations and size distributions upstream and downstream of the samplers were measured by using an aerosizer calibrated against a settling velocity chamber. The results showed that among the samplers tested, the dichotomous sampler PM10 inlet head had the best fit to the PM10 convention, while the other two samplers not only appeared to have a steeper separation-curve slope but also had significant particle bounce when challenged with solid particles. Analysis of variance also confirmed the superiority of the dichotomous samplers. Surface-coating with oil or grease greatly reduced the problem of particle bounce.  相似文献   

14.
Under the Clean Air Act Amendments, the United States Environmental Protection Agency is required to regulate emissions of 188 hazardous air pollutants. The EPA, Office of Air Quality Planning and Standards is currently conducting a National-scale Air Toxics Assessment with a goal to identify air toxics which are of greatest concern, in terms of contribution to population inhalation risk. The results will be used to set priorities for the collection of additional air toxics emissions and monitoring data. Expanded ambient air toxics monitoring will take the form of a national air toxics monitoring network. With all monitoring data, however, comes uncertainty in the form of environmental variability (spatial and temporal) and monitoring error (sample collection and laboratory analysis). With this in mind, existing data from the Urban Air Toxics Monitoring Program (UATMP) were analyzed to obtain a general understanding of these sources of variability and then provide recommendations for managing the data uncertainties of a national network. The results indicate that environmental variability, in particular temporal, comprises most of the overall variability observed in the UATMP data. However, at lower ambient levels (on the order of 0.1–0.5 ppbv or lower) environmental variability tends to dissipate and monitoring error takes over, most notably analytical error. Overall, the results suggest that common techniques in ambient air toxics monitoring for carbonyls and volatile organic compounds may satisfy many of the primary objectives of a national air toxics monitoring network.  相似文献   

15.
The Federal Clean Air Act (FCAA) framework envisions a federal-state partnership whereby the development of regulations may be at the federal level or state level with federal oversight. The U.S. Environmental Protection Agency (EPA) establishes National Ambient Air Quality Standards to describe “safe” ambient levels of criteria pollutants. For air toxics, the EPA establishes control technology standards for the 187 listed hazardous air pollutants (HAPs) but does not establish ambient standards for HAPs or other air toxics. Thus, states must ensure that ambient concentrations are not at harmful levels. The Texas Clean Air Act authorizes the Texas Commission on Environmental Quality (TCEQ), the Texas state environmental agency, to control air pollution and protect public health and welfare. The TCEQ employs three interactive programs to ensure that concentrations of air toxics do not exceed levels of potential health concern (LOCs): air permitting, ambient air monitoring, and the Air Pollutant Watch List (APWL). Comprehensive air permit reviews involve the application of best available control technology for new and modified equipment and ensure that permits protect public health and welfare. Protectiveness may be demonstrated by a number of means, including a demonstration that the predicted ground-level concentrations for the permitted emissions, evaluated on a case-by-case and chemical-by-chemical basis, do not cause or contribute to a LOC. The TCEQ's ambient air monitoring program is extensive and provides data to help assess the potential for adverse effects from all operational equipment in an area. If air toxics are persistently monitored at a LOC, an APWL area is established. The purpose of the APWL is to reduce ambient air toxic concentrations below LOCs by focusing TCEQ resources and heightening awareness. This paper will discuss examples of decreases in air toxic levels in Houston and Corpus Christi, Texas, resulting from the interactive nature of these programs.

Implications: Texas recognized through the collection of ambient monitoring data that additional measures beyond federal regulations must be taken to ensure that public health is protected. Texas integrates comprehensive air permitting, extensive ambient air monitoring, and the Air Pollutant Watch List (APWL) to protect the public from hazardous air toxics. Texas issues air permits that are protective of public health and also assesses ambient air to verify that concentrations remain below levels of concern in heavily industrialized areas. Texas developed the APWL to improve air quality in those areas where monitoring indicates a potential concern. This paper illustrates how Texas engaged its three interactive programs to successfully address elevated air toxic levels in Houston and Corpus Christi.  相似文献   

16.
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.  相似文献   

17.
ABSTRACT

A multi-system, high-volume, parallel plate diffusion dénuder Brigham Young University Organic Sampling System (BIG BOSS) was tested using collocated samplers at the Pico Rivera Monitoring Station of the South Coast Air Quality Management District, South Coast Air Basin, in September 1994. Six-hr daytime and 9-hr nighttime samples were collected with a flow of about 200 L/min through each of the three systems designed to collect particles smaller than 2.5, 0.8, and 0.4 mm in a diffusion denuder sampler. Efficiency for the removal of gas phase organic compounds by the diffusion denuder was evaluated using both theoretical predictions and field measurements. Both measured and calculated data indicate high denuder efficiency for the removal of gas phase aromatic and paraffinic compounds. The precision of the BIG BOSS was evaluated using collocated samplers. The precision of determination of total carbon and elemental carbon retained by a quartz filter or of semi-volatile carbonaceous material lost from particles during sampling averaged ±7%. The precision of determination of individual organic compounds averaged ±10%. An average of 42 and 62% of the particulate organic material was semi-volatile organic compounds (SVOCs) lost from particles during sampling for daytime and nighttime samples, respectively. This “negative” sampling artifact was an order of magnitude larger than the “positive” quartz filter artifact due to adsorption of gas phase organic material. Daytime concentrations of fine particulate elemental carbon and nonvolatile organic carbon were higher than nighttime concentrations, but nighttime fine particles contained more semi-volatile organic material than daytime.  相似文献   

18.
Passive samplers with polyurethane disks (PUF) were applied in the determination of the concentration of polycyclic aromatic hydrocarbons (PAHs) in ambient air in six residential areas in the Philippines during four simultaneous sampling periods. The uptake profiles of PAHs were determined at one site during one sampling period. Most of the PAHs that were detected in air at concentrations that were significantly higher than their analytical detection limits exhibited a linear uptake trend on the PUF disk. The linear uptake profiles of some high molecular weight (HMW) PAHs were not established and this is attributed to the low concentration of the compounds in air in the gaseous phase. The retention concentrations of phenanthrene-d-10 were determined after depuration in four sampling sites during two sampling periods. The sampling rate for phenanthrene-d-10 was calculated at the linear phase of the uptake using the kA derived from depuration experiments and the relationship of kA and sampling rate which was established in a previous passive sampling study. The average sampling rate obtained for phenanthrene d-10 (2.94±0.69 m3 d−1) was applied for derivation of the concentrations of the PAHs in the field samples.The passive sampler with PUF disk and short integration time of 42–56 days is applicable for the derivation of the concentrations of PAHs in ambient air in the Philippines. The concentrations of the organic pollutants derived from the passive sampler showed variability for the six residential areas; reflecting the influence of possible sources of emission of the pollutants at the sites at the different sampling periods. The weather conditions, including the occurrence of a tropical cyclone, increased rainfall and high-relative humidity during the rainy season, had an influence on the concentrations of PAHs derived by the passive sampler.  相似文献   

19.
The MiniVOL sampler is a popular choice for use in air quality assessments because it is portable and inexpensive relative to fixed site monitors. However, little data exist on the performance characteristics of the sampler. The reliability, precision, and comparability of the portable MiniVOL PM10 and PM2.5 sampler under typical ambient conditions are described in this paper. Results indicate that the MiniVOL (a) operated reliably and (b) yielded statistically similar concentration measurements when co-located with another MiniVOL (r2=0.96 for PM10 measurements and r2=0.95 for PM2.5 measurements). Thus, the characterization of spatial distributions of PM10 and PM2.5 mass concentrations with the MiniVOL can be accomplished with a high level of confidence. The MiniVOL also produced statistically comparable results when co-located with a Dichotomous Sampler (r2=0.83 for PM10 measurements and r2=0.85 for PM2.5 measurements) and a continuous mass sampling system (r2=0.90 for PM10 measurements). Environmental factors such as ambient concentration, wind speed, temperature, and humidity may influence the relative measurement comparability between these sampling systems.  相似文献   

20.
Abstract

The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号