首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Sorption of imidazolium-based ionic liquids to aquatic sediments   总被引:1,自引:0,他引:1  
Beaulieu JJ  Tank JL  Kopacz M 《Chemosphere》2008,70(7):1320-1328
Ionic liquids (ILs) have received much attention as "green" alternatives to traditional solvents because they do not evaporate, eliminating concerns over fugitive emissions. However, if ionic liquids are used in industrial applications, they may enter aquatic systems via effluent, and their fate and transport may be influenced by sorption to sediments. In this study, we conducted batch mixing experiments with four alkylmethylimidizolium-based ILs and four types of aquatic sediments to asses the capacity for natural aquatic sediments to remove these chemicals from the water column. The concentration isotherms were non linear with point estimates of the distribution coefficient (K(d)) decreasing with increasing concentration. Apparent distribution coefficients ranged from 7.9 to 95.7l kg(-1) at an initial concentration of 0.5mM and were positively related to sediment organic matter (SOM) content. These K(d) values indicate that the ILs did not sorb strongly to the tested sediments. Increased alkyl chain length did not lead to increased sorption suggesting that hydrophobic interactions were not the most important sorption mechanism. We conclude that aquatic sediments have a limited capacity to sorb alkylmethylimidazolium ILs and that the transport of these contaminants in aquatic systems will not be strongly attenuated by sediments.  相似文献   

2.
Laboratory batch studies were conducted to characterize the sorption behavior of three pharmaceutically active substances (carbamazepine, diclofenac, and ibuprofen) in different sediment types. The sediments were natural sandy sediments from the water saturated zone and the unsaturated zone in the Berlin (Germany) area. They are characterized as medium and fine-grained sands, both with low organic carbon content. The results of the experiments show that sorption coefficients were generally quite low. Distribution coefficients (K(d) values) determined by the batch experiments varied from 0.21 to 5.32 for carbamazepine, 0.55 to 4.66 for diclofenac, and 0.18 to 1.69 for ibuprofen. Comparison of the organic carbon normalized sorption coefficient K(OC) values based on correlation equations with actual experimental data revealed that the calculated data for carbamazepine is of the same order as the experimental data. For diclofenac and ibuprofen the calculated values are much higher than the experimental data, showing a much higher mobility of diclofenac and ibuprofen in natural aquifer sediments than indicated by correlation equations based on octanol water distribution coefficients.  相似文献   

3.
Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 μg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.  相似文献   

4.
Huang XL  Zhang JZ 《Chemosphere》2011,85(8):1227-1232
Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment.  相似文献   

5.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

6.
《Chemosphere》2009,74(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

7.
Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments   总被引:4,自引:0,他引:4  
Batch kinetic and isotherm experiments were conducted to determine the sorption-desorption behavior of 2,4-dichlorophenol from seawater solutions by marine sediments containing various amounts of organic carbon (from 1.02% to 12.72% dry weight). The results indicated linear type isotherms for sorption and desorption in all marine sediments studied. The observed difference in linear sorption coefficients between sorption and desorption was indicative of sorption hysteresis. The kinetic experiments showed that equilibrium was established in less than 20 h. The study is significant with respect to sediment remediation in contaminated harbors and coastal areas.  相似文献   

8.
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.3 % and the preheated sediment (combusted at 375 °C) with reduced OC content (defined as BC) of 0.4 % by gas and pyrene sorption. The SSA and microporosity of the pristine and preheated sediments were characterized by N2 and CO2 adsorption. The results suggest that the adsorption of N2 was hindered by amorphous organic carbon (AOC) in the pristine sediment but CO2 was not. Instead, the uptake of CO2 was higher in the presence of AOC, likely due to the partition of CO2 molecules into the organic matter. The pyrene adsorptions to BC in pristine and preheated sediments show a similar adsorption capacity at high concentration, suggesting that AOC of ca. 2.9 % in the pristine sediment does not reduce the accessibility to the sorption sites on BC for pyrene.  相似文献   

9.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

10.
Absorption of polycyclic aromatic hydrocarbons to cellulose   总被引:1,自引:0,他引:1  
Jonker MT 《Chemosphere》2008,70(5):778-782
Polycyclic aromatic hydrocarbons (PAHs) are widespread toxic chemicals. The environmental fate of these chemicals is in part controlled by sorption to (organic matter in) sediments and soils. One of the most abundant organic matter compounds on earth is cellulose. Remarkably, sorption of PAHs to cellulose has hardly been studied; only two reports on the binding of some low-molecular-weight PAHs exist in the literature. In this study, sorption of PAHs to cellulose was investigated in more detail, by measuring isotherms for a series of 13 PAHs, covering a wide hydrophobicity range. The results indicated that sorption of PAHs to cellulose is a linear partition process for all PAHs investigated (phenanthrene-indeno[1,2,3-cd]pyrene). The affinity of PAHs for cellulose appeared to be about 400 times lower than for octanol and even up to 300000 times lower than for black carbon or coal. Linked to the estimated yearly production of cellulose and black carbon, these results suggest that cellulose is probably not a major environmental sorption domain for PAHs.  相似文献   

11.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

12.
Sediment sorption and desorption processes are important in determining the movement and fate of persistent organic compounds in aquatic systems. Batch experiments show that after an initial one week uptake period, continual release of Aroclor 1242 from sediment occurs over a six-month period. These observations suggest that a two-stage kinetic model, rather than the conventional equilibrium model, is more appropriate for representing sediment uptake and release processes. Additional batch studies were used to measure short- and long-term rate coefficients for these processes. Simulation studies, with multiple sediment and contaminant inputs, indicate that over a 16-day period a kinetic model better matches the experimental data than do three other equilibrium-based sorption/desorption models. Further long-term simulations demonstrate that the kinetic model, rather than equilibrium models, more adequately account for the persistence of organic contaminants in sediment.  相似文献   

13.
Black carbon (BC; soot and charcoal) can be an extremely strong sorbent for organic compounds. In a previous study, sorption of d(10)-phenanthrene (d(10)-PHE) to BC in an unmodified contaminated sediment was found to be nine times less than that for BC isolated from this sediment. To find out the mechanism of this sorption attenuation (competition for BC sites between d(10)-PHE and native PAHs or blocking of BC sites by natural organic matter), we determined the effect on d(10)-PHE-BC sorption isotherms of additions of either PAHs or precipitated humic acid. Addition of humic acid did not significantly decrease BC sorption, whereas PAH additions (equal to the native PAH content in the original sediment) did, by about one order of magnitude. Therefore, competition between d(10)-PHE and the native PAHs could explain the whole attenuation of sorption to BC in unmodified sediments.  相似文献   

14.
The effect of dissolved organic carbon on the process of pollutant sorption to aquatic sediments was studied using sediments from the Boonton Reservoir/Rockaway River system in northern New Jersey. Addition of DOC to the aqueous phase reduced the sorption of DDT to sediments, but had no effect on the sorption of Lindane. The effect of the DOC is to increase the amount of DDT in the soluble phase and enable transport of the compound throughout an aquatic system. The apparent influence of DOC on the equilibrium distribution of organic compounds is illustrated by modifying an existing environmental model.  相似文献   

15.
Mineral surfaces form the main sorption phase for alcohol ethoxylates (AEs) in marine sediment. Competition for adsorption sites is investigated for marine sediment and kaolinite clay using simple mixtures of AE homologues. For both sorbents, adsorption sites on mineral surfaces can be effectively blocked by an AE homologue with the strongest adsorption affinity. The strongly adsorbed AE, however, forms a second sorption phase to which weakly adsorbing AE will sorb, forming bilayers. An extended dual-mode model accounts for competition effects, while still based on sorption properties of individual compounds. Competition effects become apparent when total adsorbed concentrations reach ∼10% of the adsorption capacity. Deviations from individual sorption isotherms depend on affinity constants and dissolved homologue composition. Competition will not often occur in contaminated field sediments, with AEs concentrations usually far below the adsorption capacity, but will affect sorption studies, sediment toxicity tests or applications with nonionic surfactant mixtures.  相似文献   

16.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

17.
The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic micropollutants. The combination of these two mechanisms affected the observed distribution coefficients within a factor of two, in some cases increasing and in other cases decreasing the sorption of the chemicals. No means for prediction of the effect is currently available, but from a practical point of view, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited.  相似文献   

18.
This is the second of a two-part series describing the sorption kinetics of hydrophobic organic chemicals. Part I “The Use of First-Order Kinetic Multi-Compartment Models” is published in issue 1 of this journal, pp. 21–28. Sorption kinetics of chlorinated benzenes from a natural lake sediment have been investigated in gas-purge desorption experiments. Biphasic desorption curves, with an initial “fast” part and a subsequent “slow” part, were found for all tested chlorobenzenes. From these results first-order sorption uptake and desorption rate constants were calculated with a two-sediment compartment model, which is presented in the first paper. In three sets of experiments the sorption uptake period and sediment/water ratio were varied. Rate constants are not influenced by these experimental conditions, which supports the partitioning concept for the sorption of hydrophobic organic chemicals in sediments.  相似文献   

19.
Studies on the sorption behaviors of nitrobenzene on marine sediments   总被引:7,自引:0,他引:7  
Zhao XK  Yang GP  Gao XC 《Chemosphere》2003,52(5):917-925
The sorption behaviors of nitrobenzene on marine sediments were systematically investigated in this study. The nitrobenzene sorption on both HCl-treated and untreated sediments accorded well with the linear sorption isotherm. It occurred primarily through partition function of organic carbon of sediments. In comparison, the sorption behavior of nitrobenzene on H2O2-treated sediments was nonlinear and conformed to Langmuir isotherm. Sorption of nitrobenzene on H2O2-treated sediment was mainly through surface function of sediment minerals such as clays. With the increase of ionic strength (salinity), solubility of nitrobenzene in solution would decrease. At the same time, the release of dissolvable part of organic carbon into water solution would also decrease. As a result, partition coefficient and saturate adsorption amount of nitrobenzene on marine sediments increased with increasing salinity of seawater. Contrary to the influence of salinity, partition coefficient and saturate adsorption amount of nitrobenzene decreased with increasing temperature.  相似文献   

20.
Im J  Lee CM  Coates JT 《Chemosphere》2008,71(4):621-628
In studies assessing sorption of hydrophobic organic compounds (HOCs) in natural systems, the choice of an appropriate reference black carbon, which can represent environmental black carbon (BC), is essential. This study compared isotherms of two commonly available and distinct reference BCs (n-hexane soot (BCRM) and diesel particulate matter (SRM 2975)) and a natural sediment from a source with little black carbon (Lake Hartwell, SC) using 3,3',4-trichlorobiphenyl (IUPAC #35) as a model sorbate. There was greater sorptivity for PCB-35 by BCRM than by SRM 2975. The observed differences in sorption between the two reference black carbons for PCB-35 may be ascribed to the different chemical characteristics of the black carbons. Differences in pore volume distribution at <16A pore width are less likely to be responsible for the observed differences in sorption. The elemental analysis confirmed that BCRM was a pure n-hexane soot because only C, H and O were measured. In contrast, SRM 2975 also contained N and S and a higher O% than BCRM. Compared to the low BC sediment, the two reference BCs had greater pore volume distributions, surface areas, total pore volumes and sorption. The observed nF (i.e., Freundlich exponent) values for PCB indicated greater linearity of the isotherms for the natural sediment than for the reference black carbons. For designing studies of sorption of HOCs in natural systems, in particular, when PCBs are contaminants of concern, results of this study can aid selection of the appropriate reference BCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号