首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clay minerals and zeolites have large cation exchange capacities, which enable them to be modified by cationic surfactant to enhance their sorption of organic and anionic contaminants. In this study, the influence of quaternary ammonium surfactants on sorption of five metal cations (Cs+, Sr+, La3+, Pb2+, and Zn2+) onto a clinoptilolite zeolite was investigated. Generally, the metal cation sorption capacity and affinity for the zeolite decreased, indicating that presorbed cationic surfactants blocked sorption sites for metal cations, as the surfactant loading on the zeolite increased. Cesium and Pb2+ sorption was affected to a small extent, indicating that selective sorption for Cs+ and specific sorption for Pb2+ play an important role in addition to cation exchange. Sorption of cationic surfactants on zeolite preloaded with different metal cations showed a strong correlation with the chain length of the surfactant tail group, while the roles of the charges and types of the metal cations were minimal. As the chain length increases, the critical micelle concentration decreases and the surfactant molecules become more hydrophobic, resulting in progressive bilayer coverage. Desorption of presorbed metal cations by cationic surfactants was strongly affected by the surfactant chain length and metal type. More metal cations, particularly Sr2+ and Zn2+, desorbed with an increase in surfactant chain length. The results, in combination with those from organic and oxyanion sorption on surfactant-modified zeolite, may be used for future surfactant modification to target sorption and desorption of a specific type of contaminant or a mixture of different types of contaminants.  相似文献   

2.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

3.
Soil sorption of most hydrophobic organic compounds (e.g., nonpolar pesticides) is directly related to soil organic matter (SOM) content. Humic substances are the major SOM components, containing carboxylic, phenolic, amine, quinone, and other functional groups, and specific structural configurations. In this paper, sorption interactions between imazaquin (2-[4,5-dydro-4-methyl-4-(1-methylethyl)-5-oxo-1H- imidazol-2-yl]-3-quinoline-carboxylic acid) herbicide (IM) and a humic acid (HA) extracted from a typical Brazilian Oxisol were studied with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopic techniques. A polarographic technique was used to quantify sorption. The IM amount sorbed on the HA was much higher than that on the whole soil within the pH range studied, emphasizing the prominent role played by SOM on IM sorption. Moreover, IM sorption increased as the soil-solution pH decreased. This enhancement in sorption was attributed to the hydrophobic affinity of the herbicide by the HA and to the electrostatic interaction between the protonated quinoline group of IM and the negative sites of the HA. Hydrophobic regions in the HA's interior at low pH (< 5.0) were recently demonstrated by an EPR detectable spin-label molecule. The FTIR and EPR spectroscopy and polarography data indicated weak interaction between IM and the soil and its HA, involving hydrogen bonding, proton transfer, and cation exchange (at low pH), and mainly hydrophobic interactions. However, no strong reaction mechanism, such as charge transfer, was involved. In addition, this research suggested that soil amendment with organic material might increase magnitude of IM sorption, consequently avoiding leaching and carryover problems usually found for mobile and persistent herbicides such as imazaquin.  相似文献   

4.
Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.  相似文献   

5.
A numerical model was developed to describe the fate and transport of hydrazinium (N2H5+) and competing Ca2+ and H+ cations applied in acidic solutions to columns of Ca2+/H+-saturated sandy soil during steady saturated flow conditions. Instantaneous ternary H+-Ca2+-N2H5+ cation exchange using the Gaines-Thomas approach was combined with second-order, irreversible, kinetic chemisorption of exchange-phase N2H5+ ions as major retention mechanisms for N2H5+. Exchange-mediated chemisorption is assumed to occur as chemical binding of N2H5+ ions located on carboxyl-group exchange sites to nearby carbonyl groups, consequently decreasing the effective soil cation exchange capacity (CEC). Comparison of simulated and observed breakthrough curves (BTCs) for concentrations of N2H5+ and Ca2+ ions in column effluent was used in model evaluation. The cation transport model with cation exchange coupled with exchange-mediated chemisorption provided a valid first approximation for N2H5+ transport.  相似文献   

6.
Prosulfuron [1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl) phenylsulfonyl]-urea), a relatively new sulfonylurea herbicide, is a weak acid (pK(a) 3.76), and therefore, will undergo pH-dependent speciation and sorption. Understanding prosulfuron sorption in soils is important for predicting its environmental fate. Soil and solution factors controlling sorption were investigated by measuring prosulfuron sorption on five model sorbents (amorphous silica, alpha-alumina, CaSWy1 montmorillonite, commercial humic acid, and anion exchange resin) and 10 variable-charge soils from CaCl(2) and Ca(H(2)PO(4))(2) solutions as a function of pH and ionic strength. Anion exchange of prosulfuron accounted for up to 82% of overall sorption in the pH range from 3 to 7. The relative importance of anion exchange to prosulfuron sorption was positively correlated to the ratio of anion and cation exchange capacities. Comparison between organic carbon (OC)-normalized sorption (K(oc)) versus pH for humic acid and variable-charge soils show similar trends with sorption decreasing with increasing pH. However, K(oc) values estimated from variable-charge soils in the lower pH range where anion exchange has the greatest contribution to sorption was almost one log unit greater than that estimated from humic acid clearly exemplifying the impact of anion exchange. Similarity in K(oc)-pH curves for humic acid and variable-charge soils may result from the fact that (i) cation exchange capacity increases with increasing OC content, thus effective anion exchange capacity is reduced; and (ii) the relative contribution of hydrophobic and hydrophilic sorption mechanisms was fairly constant. Given that both hydrophilic and hydrophobic sorption of prosulfuron decrease with increasing pH, addition of fertilizer and lime amendments may enhance the potential for off-site leaching of recently applied acidic pesticides.  相似文献   

7.
Unusually high cation exchange capacity (CEC) values relative to clay content are frequently reported for lignite overburden and minesoils. The CEC to percent clay ratio is commonly greater than one and would require that the average charge of the clay fraction be greater than 100 cmol(c) kg(-1). A comparison of methods for particle-size distribution suggests that the major reason lignite overburden samples have CEC to percent clay ratios greater than one is incomplete dispersion of aggregates of clay minerals or shale fragments. Preliminary investigations revealed the presence of shale fragments, smectite, and partially weathered mica in the silt fraction. Methods commonly used in soil textural analysis underestimated clay content by approximately 24%. The silt fraction may, therefore, provide a "hidden" source of CEC. Another important factor influencing the CEC to percent clay ratio was the presence of organic materials (lignite) in the samples. Lignite may make a significant contribution to CEC in overburden materials. In a study designed to estimate the pH-dependent charge of both the mineral and organic fractions, the CEC of overburden organic constituents was determined to be approximately 158 cmol(c) kg(-1) at pH 8.2. The high CEC to percent clay ratio in lignite overburden and minesoils may be resolved by adjusting methods for clay determination to optimize dispersion and by accounting for CEC due to organic materials. An alternative approach is to use existing methodology and use correction factors to account for incomplete dispersion of clay minerals and the charge contributions of organic materials.  相似文献   

8.
The outgoing cations of Greek heulandite-rich tuff samples (heulandite type-III, 91wt.%, mica 4wt.%, feldspar 5wt. %, CEC 2.22meq/g) were analysed upon exchange with ammonium acetate using atomic absorption spectrometry (AAS). The kinetic curves of each cation were investigated over a total time of contact of 720h with sampling at frequent intervals. The materials were examined by powder X-ray diffraction, SEM-EDS, and AAS. The sorption ability was measured using the ammonium acetate saturation method. It was found that Ca(2+) presents an unexpected extra-framework release and a surprisingly high degree of exchange (90%). The exchange of Mg (57%) is also worthy of note whereas the behavior of K(+) showed an expected rapid initial release. The behavior of Na(+) must be similar. However, its lower concentration in the zeolitic material minimizes its overall significance somewhat. On the other hand, Ca(2+) and Mg(2+) release is kinetically much slower, compared to that of alkali metal ions, and this phenomenon indicates that different exchange energies are needed till final equilibrium.  相似文献   

9.
Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.  相似文献   

10.
The comparison of phenol sorption on phenyltrimethylammonium (PTMA)- and benzyltrimethylammonium (BTMA)-bentonite shows a clear difference as far as phenol sorption isotherms are concerned. For PTMA-bentonite the sorption isotherm is of a straight-line character which results from simple partitioning of phenol between the aqueous and organic phases sorbed on the bentonite surface. For BTMA-bentonite the isotherm has a convex shape, characteristic of physicochemical sorption.For the first time a three-parametric model, including the dissociation constant of phenol pKa, distribution constant of phenol Kdphen and phenolate anion Kdphen between the aqueous phase and the bentonite phases is used for the evaluation of phenol sorption on organoclays with pH change. The model shows that the values of Kdphen are higher than those of Kdphen for all investigated initial phenol concentrations.The inspection of the FTIR spectrum of BTMA-bentonite loaded with phenol in the regions 1300–1600 and 1620–1680 cm−1 shows the features of π–π electron interaction between the benzene rings of phenol and the BTMA cation together with the phenol–water hydrogen bond strengthened by this interaction.  相似文献   

11.
Ground water pollution due to herbicide leaching has become a serious environmental problem. Imazaquin [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid] is an herbicide used to control broadleaf weeds in legume crops. Imazaquin is negatively charged at the basic pH of calcareous soils and exhibits high leaching potential in soils. Our aim was to design formulation of imazaquin to reduce herbicide leaching. Imazaquin sorption on pillared clay (PC) and crystal violet (CV)-montmorillonite complexes was studied. The CV-montmorillonite complexes become positively charged with adsorption of CV above the cation exchange capacity (CEC) of montmorillonite, and thus can sorb imazaquin. The Langmuir equation provides a good fit to isotherms of imazaquin sorption on PC and CV-montmorillonite complexes, but for charged complexes an equation that combines electrostatics with specific binding was preferred. Maximal imazaquin sorption was 17.3 mmol kg-1 for PC and 22.2 mmol kg-1 for CV-montmorillonite complexes. The extents of imazaquin desorption into water were 21% for PC and 5% for CV-clay complexes. The presence of anions decreased imazaquin sorption on both sorbents in the sequence phosphate > acetate > sulfate. Reduction of imazaquin sorption by the anions and the extent of its desorption in electrolyte solutions were higher for PC than for CV-clay complexes. Leaching of imazaquin from CV-montmorillonite formulations through soil (Rhodoxeralf) columns was two times less than from PC formulations and four times less than that of technical imazaquin. The CV-montmorillonite complexes at a loading above the CEC appear to be suitable for preparation of organo-clay-imazaquin formulations that may reduce herbicide leaching significantly.  相似文献   

12.
Several solid-state 13C nuclear magnetic resonance (NMR) techniques were used to characterize soil organic matter spiked with 13C-labeled organic compounds spanning a range of hydrophobicities (benzoic acid, benzophenone, naphthalene, phenanthrene, and palmitic acid). The chemical shifts of NMR resonances of the sorbed species were shifted by up to 3 ppm relative to those of the neat compounds. Sorption also resulted in increased resonance linewidth for the compounds containing a single 13C label, indicating the presence of a range of different chemical environments at the sites of sorption. On the other hand, sorption decreased the linewidth of the resonance of naphthalene, which was uniformly 13C-labeled. This was attributed to the removal of intermolecular 13C-13C dipolar coupling. Heterogeneity of the organic matter was demonstrated using the spectral editing technique proton spin relaxation editing (PSRE), which enabled the identification and quantification of charcoal-rich domains characterized by rapid rates of proton spin-lattice relaxation in the static frame (T1H), and humic domains characterized by slow rates of T1H relaxation. Furthermore it was demonstrated that the sorbed 13C-labeled molecules "inherit" the T1H "signature" of the organic matrix in their immediate vicinity. Thus PSRE on the spiked soils enabled evaluation of the relative affinity of the two domain types for the sorbate molecules. The charcoal-rich domains were shown to have a twofold to tenfold greater affinity for the organic compounds, with greater differences found for the more hydrophobic compounds.  相似文献   

13.
Mineral surfaces can alter the ability of humic substances (HS) to bind hydrophobic organic contaminants. In this study, complete adsorption (i.e., to avoid HS adsorptive fractionation effects) of a small subset of well-characterized terrestrial and aquatic HS on kaolinite and hematite significantly changed their subsequent organic carbon-normalized partition coefficients K(ads)(oc) for pyrene relative to their original respective dissolved organic carbon-normalized partition coefficients K(dis)(oc). Parallel experiments with ultrafiltration (UF) fractions obtained from purified Aldrich humic acid (PAHA) (Aldrich Chemical, Milwaukee, WI) gave similar results. The heterogeneity among the PAHA UF fractions was examined via their mineral surface adsorption characteristics and their subsequent ability to bind pyrene. As expected, variations in maximum adsorption densities (q(max)), Langmuir adsorption constants (K(q)), and pyrene K(ads)(oc) values were observed among the PAHA UF fractions. However, general trends of q(max), K(q), and pyrene log K(ads)(oc) values for the PAHA UF fractions versus the logarithm of their weight-average molecular weights (MW(w)) did not typically match the corresponding trends obtained with the four aquatic and terrestrial HS. In general, an ideal mixture competitive adsorption model gave reasonable predictions for PAHA sorption to kaolinite and hematite based on their corresponding UF isotherm parameters. Ideal mixture predictions of pyrene partitioning to adsorbed PAHA from the corresponding UF fraction results were better for kaolinite versus hematite, indicating that the underlying mineral surface can alter the effects of HS heterogeneity on hydrophobic organic contaminant sorption.  相似文献   

14.
Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).  相似文献   

15.
Column experiments were conducted to study chemical factors that influence the release of clay (kaolinite and quartz minerals) from saturated Ottawa sand of different sizes (710,360, and 240 microm). A relatively minor enhancement of clay release occurred when the pH was increased (5.8 to 10) or the ionic strength (IS) was decreased to deionized (DI) water. In contrast, clay release was dramatically enhanced when monovalent Na+ was exchanged for multivalent cations (e.g., Ca2+ and Mg2+) on the clay and sand and then the solution IS was reduced to DI water. This solution chemistry sequence decreased the adhesive force acting on the clay as a result of an increase in the magnitude of the clay and sand zeta potential with cation exchange, and expansion of the double layer thickness with a decrease in IS to DI water. The amount of clay release was directly dependent on the Na+ concentration of the exchanging solution and on the initial clay content of the sand (0.026-0.054% of the total mass). These results clearly demonstrated the importance of the order and magnitude of the solution chemistry sequence on clay release. Column results and scanning electron microscope (SEM) images also indicated that the clay was reversibly retained on the sand, despite predictions of irreversible interaction in the primary minimum. One plausible explanation is that adsorbed cations increased the separation distance between the clay-solid interfaces as a result of repulsive hydration forces. A cleaning procedure was subsequently developed to remove clay via cation exchange and IS reduction; SEM images demonstrated the effectiveness of this approach. The transport of Cu2+ was then shown to be dramatically enhanced by an order of magnitude in peak concentration by adsorption on clays that were released following cation exchange and IS reduction.  相似文献   

16.
Avermectins are widely used to treat livestock for parasite infections. Ivermectin, which belongs to the group of avermectins, is particularly hazardous to the environment, especially to crustaceans and to soil-dwelling organisms. Sorption is one of the key factors controlling transport and bioavailability. Therefore, batch studies have been conducted to characterize the sorption and desorption behavior of ivermectin in three European soils (Madrid, York, and artificial soil). The solid-water distribution coefficient (K(d)) for ivermectin sorption to the tested soils were between 57 and 396 L kg(-1) (determined at 0.1 microg g(-1)), while the organic carbon-normalized sorption coefficients (K(oc)) ranged from 4.00 x 10(3) to 2.58 x 10(4) L kg(-1). The Freundlich sorption coefficient (K(F)) was 396 (after 48 h) for the artificial soil over a concentration range of 0.1 to 50 microg g(-1), with regression constants indicating a concentration-dependent sorption. The obtained data and data in the literature are inconclusive with regard to whether hydrophobic partitioning or more specific interactions are involved in sorption of avermectins. For abamectin, hydrophobic partitioning seems to be one of the dominant types of binding, while hydrophobicity is less important for ivermectin, which is probably due to the lower lipophilicity of the molecule. Furthermore, the presence of cations such as Ca(2+) leads to decreasing sorption. Thus, it is presumed that ivermectin binds to soil by formation of complexes with immobile, inorganic soil matter. In contrast to abamectin, hysteresis could be excluded for ivermectin in the studied soils for the evaluation of sorption and desorption. The sorption mechanism is highly dependent on physicochemical properties of the avermectin.  相似文献   

17.
This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.  相似文献   

18.
Post-treatment of leachate from soil-washing remedial actions may be necessary depending on the amounts of dissolved contaminants present. Uptake of arsenic species by surfactant-modified zeolite (SMZ) from a synthetic soil leachate (pH of approximately 12 [NaOH]) was measured as a test of SMZ as a post-treatment sorbent. Batch sorption isotherms were prepared using leachate to SMZ ratios from 40:1 to 4:1, and temperatures of 25 and 15 degrees C. Equilibrium levels of dissolved and total solution arsenic were similar. At each temperature, sorption appeared to reach a plateau or maximum, then decreased at the highest solution concentration, corresponding to the lowest amount of zeolite added (2.5 g). A maximum sorption value of 72.0 mmol of arsenic per kg of SMZ (5400 mg/kg) was observed at 25 degrees C, and 42.1 mmol/kg (3150 mg/kg) at 15 degrees C. Total arsenic recoveries varied from 74 to 125%. Surfactant-modified zeolite removed up to 97% of dissolved organic carbon and decolorized the leachate solutions. Excluding the points for the highest arsenic to SMZ ratio, the sorption isotherms were well described by the linearized form of the Langmuir equation, with coefficients of determination greater than 0.90 at both temperatures. Sorption of arsenic by SMZ is attributed to anion exchange with counterions on the surfactant head groups, and/or partitioning of organic carbon-complexed arsenic into the surfactant bilayer.  相似文献   

19.
The sorption and desorption behavior of hexavalent chromium and chlorinated ethenes in a sandy ground water aquifer with a low reduction capacity was evaluated by performing a variety of analyses and experiments at the laboratory (batch and column studies) and field (in situ injection-withdrawal experiment) scales. The partitioning coefficients determined from the field and laboratory experiments are generally similar. Both sets of experiments yielded relatively low partition coefficients for chromium and chlorinated ethenes. The column studies and injection-withdrawal experiment indicate that chromium has the potential to leach from aquifer sediments and act as a secondary source of contamination. However, the magnitude of the secondary source effect is not significant due to low concentrations of leachable contamination. The chromium sorption isotherm data were also simulated using the triple layer surface complexation model (TLM). The isotherm data were modeled using the TLM, illustrating the applicability of geochemical modeling for sorption of chromium to these sediments under variable pE-pH conditions.  相似文献   

20.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号