首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Aluminum in-use stocks in China: a bottom-up study   总被引:1,自引:0,他引:1  
Characterization of the in-use stocks of a resource provides a perspective on the relationship between the amount of materials providing services and the state of development of a country or region. In this regard, we have performed what we believe to be the first aluminum in-use stock study for a developing country: China in 2000 and 2005. We found the in-use stocks to be 29 Tg Al (2000) and 49 Tg Al (2005), or 23 kg Al/capita (2000) and 37 kg Al/ capita (2005). These are lower limits because data were not available for all aluminum-containing products. The 2005 per-capita figure is roughly half that of the global average in-use aluminum stock, and about one-tenth that of highly developed countries such as Japan and the United States.  相似文献   

2.
The material flow approach provides a framework from which to address resource management and estimate gross environmental impacts, both spatially and temporally. In this article, the major flows of zinc in Oceania over its entire life-cycle are examined; these include production (mining, milling, and refining), fabrication and manufacturing of semi- and finished products, use, and the waste management system. Comprehensive mass balances were applied to determine the zinc flows, including the quantities of zinc entering stocks in waste and in-use reservoirs. The Oceania cycle shows that substantial amounts of zinc (about 1120Gg/year) are mined on the continent. The total flow of zinc in finished products entering the use stage is about 8.6kg/(capita.year), substantially exceeding the zinc flow in discarded products. This difference, about 7.2kgZn/(capita.year) on average, is added to the in-use reservoir, largely for galvanizing applications in domestic construction and transportation. Less than 60% of all discarded zinc entering the waste management system is recycled. Much of the remaining discarded zinc is diluted into other waste streams, where recovery and recycling are probably not economically feasible.  相似文献   

3.
Many materials currently in use are potentially available to become raw materials for future production if the materials are recycled instead of discarded as solid waste. However, the structure and life-expectancy of these secondary resources have not been sufficiently examined, and comprehensive methods for forecasting the availability of such materials are still lacking. This study presents a method for identifying anthropogenic material stocks in combination with the method of material flow analysis (MFA). The method was applied to copper in Switzerland as an example, with the focus on use in buildings. The exploration concept was a three-step process. First, a MFA identified the relevant stocks within the inventory of the region. Second, these stocks were inventoried through a building stock model and determination of key parameters that were defined by surveying selected buildings and from the literature. Third, the study team developed a dynamic MFA model to describe the copper stocks and flows during the period 1900-2000. The results of the copper stock calculation (in kg capita(-1)) were: buildings 79 +/- 11, infrastructure 107 +/- 25, movables 34 +/- 9, landfills 50 +/- 12. The calibrated model enabled the study team to develop resource and waste management scenarios forecasting waste flows. It is shown that the conversion of buildings into other uses may affect the waste flows significantly.  相似文献   

4.
Anthropogenic metal cycles in China   总被引:2,自引:0,他引:2  
The flows and stocks of seven important industrial metals were characterized for mainland China for several years in the dynamically changing decade of 1994–2004. One-year snapshot cycles are provided for chromium, nickel, and silver. For copper, zinc, lead, and iron, multiple-year cycles have been completed; they demonstrate that the flows of these metals into use in China doubled between 2000 and 2004. Although the Chinese per capita flows from production to disposal are mostly shown to be below the global average rate, they are increasing or are expected to increase dramatically. The metal resource efficiency is evaluated for several indicators of material flow analysis; these metrics for China are also below the global average values. The research quantitatively illustrates that China’s metal cycles may pose significant resource and environmental challenges in terms of their magnitudes and potential for growth.  相似文献   

5.
The contemporary copper cycle of Asia   总被引:11,自引:1,他引:10  
A regional stock and flow model for an industrial metal was developed based on the substance-flow framework. Using this model, the contemporary copper cycle of the Asian region was constructed by aggregating country-level production and import and export data for different stages of the copper cycle. The reliability and availability of data were assessed both qualitatively and quantitatively. Asia as a region is a net importer of copper. There is a significant build-up of copper in use at a rate of nearly 3TgCu/year. The per capita generation of copper waste (0.4kgCu/(capita-year)) and the rate of secondary recovery of copper are low compared with Europe and North America. Japan's rates of use, waste generation, and recycling of copper are all much larger than the continental average. A tremendous potential exists in the region to utilize the copper content of the in-use reservoir, and subsequently to enhance copper recycling rates in the future. A set of metrics for the copper cycle is suggested in order to address sustainability issues related to resource policy and the environmental management of copper.  相似文献   

6.
A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000–2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement.  相似文献   

7.
The inflow and stock (amount in use) of heavy metals (cadmium(Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn)) in goods in 1995 have been quantifiedin the anthroposphere of Stockholm, Sweden. Statistics on national, regional and local level were used. Contacts were established with representatives from production and constructionin the industrial sector and with authorities. The results show that the stock of Cd is 0,2 kg per capita. For the other heavymetals the corresponding result per capita is: Cr 8, Cu 170, Hg 0,01, Ni 4, Pb 73 and Zn 40 kg. The inflow varies between2–8%of the stock indicating the importance of the stock. The lowestlevels are for Cu and Pb. Heavy metal levels in solid waste are high, between 15–45% of the amount in the inflow (Hg excluded), the lowest values were for Cu and Pb. Thus, recyclingis incomplete. Long life expectancy goods form the majority of the stock but there is a tendency that short life expectancy goods increase their importance in the inflow. Concealedgoods are also more frequent in inflow than in the stock.  相似文献   

8.
Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia’s most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5–0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.  相似文献   

9.
129I is one of the more hazardous nuclides occurring in radioactive waste. In the form of I, its most likely speciation, it is poorly sorbed on most geologic media. Several workers have suggested the use of silver to precipitate I as the insoluble AgI, in a cemented waste form, or as a “getter”. The efficacy of this procedure is examined by experiment, in conjunction with thermodynamic predictions.The addition of AgNO3 to Portland cement leads to coprecipitation with C-S-H, with low Ag solubilities ( 10 μmg/L); 2–;3 orders of magnitude lower than predicted (from Ag2O). AgI is stable in these matrices, with low aqueous I concentrations (<2 mg/L). In 85% BFS-15% OPC pastes, AgI is unstable due to redox and complexation reactions, with much I passing into solution; concentrations up to 900 mg/L were observed. It is shown that repository conditions, on closure, are also likely to induce solubilisation of I from AgI. It is concluded that the use of Ag is unlikely to significantly improve the immobilisation properties of the near field for radioiodine.  相似文献   

10.
We estimated the in-use stocks of polybrominated diphenyl ethers (PBDEs) in Japan using a population balance model. The estimation is based on the domestic demand of PBDEs and the assumed survival rate of these products. Two cases relevant to the future regulation of commercial deca-BDE are considered, namely (1) deca-BDE declines at the same rate as the current rate of decline, and (2) deca-BDE is discontinued after 2020. The estimates of the decreasing rates of in-use penta-, octa-, and deca-BDE stocks were proportional with the measured decreases in the atmospheric concentrations of these substances. The in-use penta- and octa-BDE stocks could be depleted in the near future (500 and 60 tonne in 2013, and an estimated 20 and <1 tonne in 2020, respectively). Relevant to case 1, the in-use stocks of deca-BDE-containing products would be 28,000 tonne in 2013 and an estimated 1900 tonne in 2040, providing an ongoing source of deca-BDE emission to the environment. On the other hand, relevant to case 2, most of the deca-BDE would be phased out by 2040. The atmospheric emissions of deca-BDE were predicted at 84–841 kg/year in 2013 and an estimated 43–425 kg/year in 2020.  相似文献   

11.
For all countries analyzed so far, Material Flow Analysis/Accounting (MFA) studies indicate that the overall stock of materials within the economy is growing. Most are construction minerals such as asphalt, cement, sand and gravel, crushed stone, and other aggregates. In the analyses described in this paper, flows and stocks of construction minerals were estimated for Japan from the past to the future to elucidate: (1) the mechanisms by which construction minerals become waste, and (2) the future supply of and demand for recycled crushed stone. The following conclusions were drawn: (1) The amounts of waste construction minerals generated have been and will be at much lower levels than the domestic demand for construction minerals. These differences might indicate consistent growth of the stock of construction minerals, which will become waste in the future. However, certain amounts of materials that we account for as stock can be interpreted already in the environment as dead stock or dissipated waste; such materials can be called "missing stock" or "dissipated stock". Capturing that missing or dissipated stock is very important because it provides information that clarifies the environmental impacts and loss of resources that these materials cause; it allows estimation of appropriate future waste generation. (2) The amount of construction minerals that are recognized as waste was estimated to increase in the future. An imbalance in the supply of and demand for recycled crushed stone will likely occur in the near future if an expected decline in future road construction is considered.  相似文献   

12.
Urban Metal Management The Example of Lead   总被引:1,自引:0,他引:1  
The metal metabolism of an urban region, the City ofVienna, was investigated to discuss urban metal management strategies in view of environmental protection and resource conservation. About 90% of the metal stock is located in Vienna's buildings and infrastructure, whilst only 10% is in the landfills. The city stock represents a potential source for diffusive emissions. However, the control of the current environmental policy concentrates mainly on landfill emissions. Diffusive emissions resulting from the losses over the use of metal containing goods in the city are widely dispersed and cannot be easily controlled due to numerous non-point sources. First investigations indicate that for certain applications, the diffusive stock emissions are as significant as other sources. At present, Vienna's known diffusive and point source lead emissions into air and water are about 40 to 50 times higher than comparable past loadings from geogenic Vienna. Furthermore, a life cycle approach from acid car batteries indicates that sustainable lead management should consider flows and stocks in the hinterland of the city too. The city metal stock also represents a potential resource. Leaded water pipes built-in in Vienna's city stock have the potential to produce 1.6 million traditional car batteries. In future such city mining strategies can partly replace ore mining.  相似文献   

13.
This paper summarizes substance flow analyses for four organic substances in the City of Stockholm, Sweden: diethylhexyl phthalate (DEHP), alkylphenolethoxylates (APEO), polybrominated diphenylethers (PBDE) and chlorinated paraffins (CP). The results indicate that the stocks of APEO, PBDE and CP all are approximately 200–250 tonnes, whereas the DEHP stock is two orders of magnitude larger. Emissions can be linked to imported consumer goods such as electronics (PBDE) and textiles (APEO), and to construction materials (DEHP, CP). For several of the substances considerable amounts remain in the technosphere for a long time, even after use of the substance in new products has been eliminated. For example, the use of DEHP as plasticizer for PVC plastics in cables and floorings has more or less been phased-out, but still these applications make up a stock of some 20,000 tonnes (85% of the total DEHP stock in Stockholm) and emit 28 tonnes of DEHP annually (93% of overall emissions). Likewise, the use of chlorinated paraffins in sealants has been radically reduced, but there are 170 tonnes of CP in sealants in Stockholm making up 75% of the stock, and causing half of the emissions to water and air. These emissions are likely to continue for decades, and the stocks therefore have to be considered when analysing and managing the impact of urban substance flows on the environment.  相似文献   

14.
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.  相似文献   

15.
The Thermoselect High Temperature Recycling process has been developed in order to make available a thermal waste treatment technology avoiding major problems as known from traditional techniques like landfills or ashes, filter dust and emission producing processes. It combines slow degassing with fixed bed oxygen blown gasification and mineral and metal residue melting in a closed loop system. Municipal, industrial and other kinds of waste are compacted to less than one fifth of their original volume by means of an armored hydraulic press, and then periodically pushed into an indirectly heated degasification channel. As the waste plugs are pushed down the channel in an oxygen-free environment, waste humidity is evaporated and the organic components in the refuse are partially degasified and to a certain extent converted into a carbon-like product as the temperature increases. This flaky product and the enclosed inorganic components such as metals and minerals are continuously fed into a high-temperature reactor (HTR). Pure oxygen is added in controlled quantities and reacts with the material following exothermic oxidisation reactions. Due to overall under-stoichiometric conditions, gasification products form a combustible synthesis gas. The heat of reaction leading to temperatures up to about 2000°C in the core of the lower HTR section acts to also smelt the metal and mineral components of the waste. Chlorinated hydrocarbons such as dioxins and furans are reliably destroyed along with other organic compounds in the gaseous and the liquid phase. Material conversion equilibria are assured due to high temperatures and sufficient residence times. The synthesis gas is purified before use as combustible or primary material. After long term operation of the industrial scale demonstration plant in northern Italy, recent orders of differently sized Thermoselect plants can be announced and are illustrated on the basis of three cases out of five [with Herten 225,000 Mg/a and Berlin 300,000 Mg/a] in Germany: (1) Karlsruhe plant, 3 lines, 225,000 Mg/a, under construction; (2) Ansbach plant, 1 line, 75,000 Mg/a, completely purchased in July 1997; (3) Hanau plant, 2 lines, 90,000 Mg/a, partially purchased in October 1997. The technical concepts of these projects are illustrated with special emphasis on the flexibility of tailor-made energy recovery solutions.  相似文献   

16.
采用氨-肼联合还原法回收废硅电池片上的银,优化了回收的工艺条件。实验得到的最佳回收工艺条件为:室温下采用硝酸2次浸取废硅电池片上的银,其中硝酸质量分数30%,硝酸浸取时间6 min;氯化银粉体用氨水和水合肼还原,n(Ag)∶n(N2H4)=0.5,水合肼还原反应温度50 ℃。回收的银粉纯度很高,结晶性较好,无需提纯。  相似文献   

17.
More than 1500 manufactured gas plant (MGP) sites exist throughout the U.S. Many are contaminated with coal tar from coal-fueled gas works which produced ‘town gas’ from the mid-1800s through the 1950s.1,2 Virtually all old U.S. cities have such sites. Most are in downtown areas as they were installed for central distribution of manufactured gas. While a few sites are CERCLA/Superfund, most are not. However, the contaminants and methods used for remediation are similar to those used for Superfund clean-ups of coal tar contamination from wood-treating and coke oven facilities. Clean-up of sites is triggered by regulatory pressure, property transfers and re-development as well as releases to the environment — in particular, via groundwater migration. Due to utility de-regulation, site clean-ups may also be triggered by sale of a utility or of a specific utility site to other utilities. Utilities have used two approaches in dealing with their MGP sites. The first is ‘do nothing and hope for the best’. History suggests that, sooner or later, these sites become a bigger problem via a release, citizen lawsuit or regulatory/public service commission intervention. The second, far better approach is to define the problem now and make plans for waste treatment or immobilization. This paper describes recent experience with a high capacity/low cost thermal desorption process for this waste and reviews non-thermal technology, such as bio-treatment, capping, recycling, and dig and haul. Cost data is provided for all technologies, and a case study for thermal treatment is also presented.  相似文献   

18.
The magnitude and composition of a region’s construction and demolition (C&D) debris should be understood when developing rules, policies and strategies for managing this segment of the solid waste stream. In the US, several national estimates have been conducted using a weight-per-construction-area approximation; national estimates using alternative procedures such as those used for other segments of the solid waste stream have not been reported for C&D debris. This paper presents an evaluation of a materials flow analysis (MFA) approach for estimating C&D debris generation and composition for a large region (the US). The consumption of construction materials in the US and typical waste factors used for construction materials purchasing were used to estimate the mass of solid waste generated as a result of construction activities. Debris from demolition activities was predicted from various historical construction materials consumption data and estimates of average service lives of the materials. The MFA approach estimated that approximately 610–780 × 106 Mg of C&D debris was generated in 2002. This predicted mass exceeds previous estimates using other C&D debris predictive methodologies and reflects the large waste stream that exists.  相似文献   

19.
The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.  相似文献   

20.
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号