首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site‐selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. Predicción y Mapeo del Hábitat Potencial de Descanso de la Grulla Americana para Guiar la Selección de Sitios para Proyectos de Energía Eólica.  相似文献   

2.
Predicting a species’ distribution can be helpful for evaluating management actions such as critical habitat designations under the U.S. Endangered Species Act or habitat acquisition and rehabilitation. Whooping Cranes (Grus americana) are one of the rarest birds in the world, and conservation and management of habitat is required to ensure their survival. We developed a species distribution model (SDM) that could be used to inform habitat management actions for Whooping Cranes within the state of Nebraska (U.S.A.). We collated 407 opportunistic Whooping Crane group records reported from 1988 to 2012. Most records of Whooping Cranes were contributed by the public; therefore, developing an SDM that accounted for sampling bias was essential because observations at some migration stopover locations may be under represented. An auxiliary data set, required to explore the influence of sampling bias, was derived with expert elicitation. Using our SDM, we compared an intensively managed area in the Central Platte River Valley with the Niobrara National Scenic River in northern Nebraska. Our results suggest, during the peak of migration, Whooping Crane abundance was 262.2 (90% CI 40.2?3144.2) times higher per unit area in the Central Platte River Valley relative to the Niobrara National Scenic River. Although we compared only 2 areas, our model could be used to evaluate any region within the state of Nebraska. Furthermore, our expert‐informed modeling approach could be applied to opportunistic presence‐only data when sampling bias is a concern and expert knowledge is available.  相似文献   

3.
Abstract:  The contemporary southwestern United States is characterized by fire-adapted ecosystems; large numbers of federally listed threatened and endangered species; a patchwork of federal, state, and private landownership; and a long history of livestock grazing as the predominant land use. I compared eight sites in southern Arizona and New Mexico to assess the interacting effects of these characteristics on conservation practices and outcomes. There was widespread interest and private-sector leadership in restoring fire to southwestern rangelands, and there is a shortage of predictive scientific knowledge about the effects of fire and livestock grazing on threatened and endangered species. It was easier to restore fire to lands that were either privately owned or not grazed, in part because of obstacles created by threatened and endangered species on grazed public lands. Collaborative management facilitated conservation practices and outcomes, and periodic removal of livestock may be necessary for conservation, but permanent livestock exclusion may be counterproductive because of interactions with land-use and landownership patterns.  相似文献   

4.
The only remaining wild population of the endangered Whooping Crane ( Grus americana ) winters in salt marsh habitats of the Texas (U.S.) coast. Whooping Cranes are known to respond and utilize nearby upland habitats after a tire treatment has been applied. We investigated several factors that may attract Whooping Cranes to recently burned sites at Aransas National Wildlife Refuge between 1982 and 1994 and whether cranes utilize upland habitats primarily in response to a recent fire treatment or whether they occur regularly on uplands regardless of burning. We evaluated the effect of different years, burn site location, date of burn, and acorn production on crane use of specific burn sites. Crane use was determined with ground surveys from 1982 through 1985 and from weekly aerial surveys between 1986 and 1994. Whooping Cranes used fire-treated upland habitats to a significantly greater extent than unburned sites. The response of cranes to recently burned sites was greatest immediately after fire treatment and declined with time. No significant difference was found in crane use of burned sites among different years. Similarly, time of burn and acorn production had no significant effect on crane use of fire-treated habitats. Crane use among specific burn units differed significantly. We suggest that Whooping Cranes may be using fire-treated upland habitats to feed on recently killed vertebrates and invertebrates plus recently exposed plant items. Because cranes primarily inhabit salt marsh habitats, the availability of alternate food sources may be of considerable importance, particularly during years when marsh foods are scarce. But because it appears that areas must be burned to facilitate use by Whooping Cranes, we suggest that the extent of prescribed burning be based on reduced availability of marsh food resources and not on acorn production estimates alone.  相似文献   

5.
Abstract: The Iberian lynx (Lynx pardinus) may be the first charismatic felid to become extinct in a high‐income country, despite decades of study and much data that show extinction is highly probable. The International Union for Conservation of Nature categorizes it as critically endangered; about 200 free‐ranging individuals remain in two populations in southern Spain. Conservation measures aimed at averting extirpation have been extensively undertaken with 4 of the former 10 Iberian lynx populations recorded 25 years ago. Two of the four populations have been extirpated. The number of individuals in the third population have declined by 83%, and in the fourth the probability of extirpation has increased from 34% to 95%. Major drivers of the pending extinction are the small areas to which conservation measures have been applied; lack of incorporation of evidence‐based conservation, scientific monitoring, and adaptive management into conservation efforts; a lack of continuity in recovery efforts, and distrust by conservation agencies of scientific information. In contrast to situations in which conservation and economic objectives conflict, in the case of the Iberian lynx all stakeholders desire the species to be conserved.  相似文献   

6.
Abstract: The Whooping Crane ( Grus americana ) is an endangered bird that suffered a severe population bottleneck; only 14 adults survived in 1938. We assessed the genetic effect of this human-caused bottleneck by sequencing 314 base pairs ( bp) of the mitochondrial DNA control region from cranes that lived before, during, and after this bottleneck. The maximum length of DNA amplifiable from museum specimens was negatively correlated with age, and only 10 of 153 specimens yielded the entire 314 bp sequence. Six haplotypes were present among the prebottleneck individuals sequenced, and only one of these persists in the modern population. The most common modern haplotype was in low frequency in the prebottleneck population, which demonstrates the powerful effect of genetic drift in changing allele frequencies in very small populations. By combining all available data, we show that no more than one-third of the prebottleneck haplotypes survived the human-caused population bottleneck. High levels of variation of substitution rates among nucleotide sites prevented us from estimating the prebottleneck population size. Our data will be incorporated into the captive breeding program to allow better management decisions regarding the preservation of current genetic diversity. These data offer the first glimpse into the genetic toll this species has paid for human activities.  相似文献   

7.
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.  相似文献   

8.
The supply of freshwater to estuarine ecosystems is a critical factor in maintaining the overall health and organization of coastal marshes. Specifically along the Texas Gulf coast, the coupled effects of decreased freshwater inflows to the estuary and natural processes (e.g., precipitation, wind, and tides) can exert significant salt-stress on coastal marsh vegetation. In this project we sought to quantitatively link the inflow of freshwater to the estuary (San Antonio Bay) with Aransas National Wildlife Refuge (ANWR) coastal marsh salinity and assess the influence of salinity and inundation on Carolina wolfberry (Lycium carolinianum Walt.) phenology (leaf and fruit abundance). The Carolina wolfberry is one of the more common high marsh plant species found at ANWR and has been shown to be a key food source for endangered Whooping Cranes which inhabit the coastal marshes of the ANWR each fall/winter. Results from our study show that periods of decreased freshwater inflows to the estuary correlated with increased marsh salinity at the ANWR. Wolfberry plants at ANWR marsh sites displayed increased fruit abundance during years which had lower mean summer time salinity (June, July, and August) in San Antonio Bay; conversely, during years of increased bay salinity during the same summertime months, wolfberry plants showed decreased fruit abundance. Through the continued validation of the relationship between inflows and coastal marsh salinity, we hope to provide additional insight into how wolfberry phenology varies inter-annually across both salinity and inundation regimes and how freshwater inflows may affect food availability for the endangered Whooping Crane.  相似文献   

9.
Abstract:  The ethical, legal, and social significance of the U.S. Endangered Species Act of 1973 (ESA) is widely appreciated. Much of the significance of the act arises from the legal definitions that the act provides for the terms threatened species and endangered species. The meanings of these terms are important because they give legal meaning to the concept of a recovered species. Unfortunately, the meanings of these terms are often misapprehended and rarely subjected to formal analysis. We analyzed the legal meaning of recovered species and illustrate key points with details from "recovery" efforts for the gray wolf ( Canis lupus ). We focused on interpreting the phrase "significant portion of its range," which is part of the legal definition of endangered species. We argue that recovery and endangerment entail a fundamentally normative dimension (i.e., specifying conditions of endangerment) and a fundamentally scientific dimension (i.e., determining whether a species meets the conditions of endangerment). Specifying conditions for endangerment is largely normative because it judges risks of extinction to be either acceptable or unacceptable. Like many other laws that specify what is unacceptable, the ESA largely specifies the conditions that constitute unacceptable extinction risk. The ESA specifies unacceptable risks of extinction by defining endangered species in terms of the portion of a species' range over which a species is "in danger of extinction." Our analysis indicated that (1) legal recovery entails much more than the scientific notion of population viability, (2) most efforts to recover endangered species are grossly inadequate, and (3) many unlisted species meet the legal definition of an endangered or threatened species.  相似文献   

10.
Abstract:  Much research has focused on identifying traits that can act as useful indicators of how habitat loss affects the extinction risk of species, and the results are mixed. We developed 2 simple, rapid-assessment models of the susceptibility of species to habitat loss. We based both on an index of range size, but one also incorporated an index of body mass and the other an index combining habitat and dietary specialization. We applied the models to samples of birds (Accipitridae and Bucerotidae) and to the lemurs of Madagascar and compared the models' classifications of risk with the IUCN's global threat status of each species. The model derived from ecological attributes was much more robust than the one derived from body mass. Ecological attributes identified threatened birds and lemurs with an average of 80% accuracy and endangered and critically endangered species with 100% accuracy and identified some species not currently listed as threatened that almost certainly warrant conservation consideration. Appropriate analysis of even fairly crude biological information can help raise early-warning flags to the relative susceptibilities of species to habitat loss and thus provide a useful and rapid technique for highlighting potential species-level conservation issues. Advantages of this approach to classifying risk include flexibility in the specialization parameters used as well as its applicability at a range of spatial scales.  相似文献   

11.
Abstract: Law plays an important role in shaping land management decisions. The success of efforts to conserve biodiversity thus depends to a large degree on how well scientific knowledge is translated into public policy. Unfortunately, the Endangered Species Act, the United States's strongest legal tool for conserving bidodiversity, contains serious biological flaws. The statute itself, as well us agency regulations and policies that implement the law include provisions that fail to account accurately for important biological concepts such us ecosystem conservation, patch dynamics, and the probabilistic nature of stochastic threats to a species' persistence. Moreover, the procedures of federal agencies charged with implementing the Endangered Species Act in some cases make it difficult for interested outside reviewers to evaluate the agencies' scientific findings and methodology. However, the Endangered Species Act also gives interested individuals and groups several opportunities to provide input into the process of managing threatened and endangered species. Conservation biologists should practice focused advocacy by taking advantage of such opportunities to steer law in a more biologically sound direction.  相似文献   

12.
Understanding the conditions that force the implementation of management actions and their efficiency is crucial for conservation of endangered species. Wildlife managers are widely and increasingly using food supplementation for such species because the potentially immediate benefits may translate into rapid conservation improvements. Supplementary feeding can also pose risks eventually promoting undesired, unexpected, subtle, or indirect, and often unnoticed, effects that are generally poorly understood. For two decades, intensive food supplementation has been used in attempting to improve the breeding productivity of the Spanish Imperial Eagle, Aquila adalberti, one of the most endangered birds of prey in the world. Here, we examined the impact of this intensive management action on nestling health, including contamination, immunodepression, and acquisition of disease agents derived from supplementation techniques and provisioned food. Contrary to management expectations, we found that fed individuals were often inadvertently "medicated" with pharmaceuticals (antibiotics and antiparasitics) contained in supplementary food (domestic rabbits). Individuals fed with medicated rabbits showed a depressed immune system and a high prevalence and richness of pathogens compared with those with no or safe supplementary feeding using non-medicated wild rabbits. A higher presence of antibiotics (fluoroquinolones) was found in sick as opposed to healthy individuals among eaglets with supplementary feeding, which points directly toward a causal effect of these drugs in disease and other health impairments. This study represents a telling example of well-meaning management strategies not based on sound scientific evidence becoming a "contraindicated" action with detrimental repercussions undermining possible beneficial effects by increasing the impact of stochastic factors on extinction risk of endangered wildlife.  相似文献   

13.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

14.
Abstract: Some conservationists argue for a focused effort to protect the most critically endangered species, and others suggest a large‐scale endeavor to safeguard common species across large areas. Similar arguments are applicable to the distribution of scientific effort among species. Should conservation scientists focus research efforts on threatened species, common species, or do all species deserve equal attention? We assessed the scientific equity among 1909 mammals, birds, reptiles, and amphibians of southern Africa by relating the number of papers written about each species to their status on the International Union for Conservation of Nature Red List. Threatened large mammals and reptiles had more papers written about them than their nonthreatened counterparts, whereas threatened small mammals and amphibians received less attention than nonthreatened species. Threatened birds received an intermediate amount of attention in the scientific literature. Thus, threat status appears to drive scientific effort among some animal groups, whereas other factors (e.g., pest management and commercial interest) appear to dictate scientific investment in particular species of other groups. Furthermore, the scientific investment per species differed greatly between groups—the mean number of papers per threatened large mammal eclipsed that of threatened reptiles, birds, small mammals, and amphibians by 2.6‐, 15‐, 216‐, and more than 500‐fold, respectively. Thus, in the eyes of science, all species are not created equal. A few species commanded a great proportion of scientific attention, whereas for many species information that might inform conservation is virtually nonexistent.  相似文献   

15.
Abstract: Taxonomic rank is an important criterion in assessing the conservation priority of an endangered organism: the sole member of a distinct family will generally receive a higher priority than a semi-isolated population in a polytypic species. When cryptic evolutionary partitions are discovered in endangered species, these findings are heralded as a positive step in the conservation process. The opposite action, demoting the taxonomic rank of an endangered organism, can be resisted by the conservation community because it is perceived as detrimental to preservation efforts. We explore the arguments for and against the species status of the endangered black turtle ( Chelonia agassizii ) and contribute an additional data set based on DNA sequences of single-copy nuclear loci. These data are concordant with previous mtDNA surveys in indicating no evolutionary distinction between C. agassizii and adjacent green turtle ( C. mydas ) populations. Although the black turtle is morphologically identifiable at a low level, much of its distinction is based on size and color differences that are highly variable throughout the range of C. mydas . Thus the black turtle would be more accurately classified at the subspecific or population level. There is no strong scientific case available to defend the species status of C. agassizii , and yet that designation has persisted for over a century. We suggest that the maintenance of this name is based on geographical and political considerations, and we propose a pragmatic category for this type of taxonomy: the geopolitical species . Furthermore, we argue against the practice of preserving species status for conservation purposes. There are several good reasons to preserve the black turtle, including morphological diversity and the possibility that it is an incipient evolutionary lineage with novel adaptations; taxonomic rank, however, is not one of them.  相似文献   

16.
In the conservation of endangered species, suppression of a population of one native species to benefit another poses challenges. Examples include predator control and nest parasite reduction. Less obvious is the control of blood-feeding arthropods. We conducted a case study of the effect of native black flies (Simulium spp.) on reintroduced Whooping Cranes (Grus americana). Our intent was to provide a science-driven approach for determining the effects of blood-feeding arthropods on endangered vertebrates and identifying optimal management actions for managers faced with competing objectives. A multiyear experiment demonstrated that black flies reduce nest success in cranes by driving incubating birds off their nests. We used a decision-analytic approach to develop creative management alternatives and evaluate trade-offs among competing objectives. We identified 4 management objectives: establish a self-sustaining crane population, improve crane well-being, maintain native black flies as functional components of the ecosystem, and minimize costs. We next identified potential management alternatives: do nothing, suppress black flies, force crane renesting to occur after the activity period of black flies, relocate releases of cranes, suppress black flies and relocate releases, or force crane renesting and relocate releases. We then developed predictions on constructed scales of 0 (worst-performing alternative) to 1 (best-performing alternative) to indicate how alternative actions performed in terms of management objectives. The optimal action depended on the relative importance of each objective to a decision maker. Only relocating releases was a dominated alternative, indicating that it was not optimal regardless of the relative importance of objectives. A rational decision maker could choose any other management alternative we considered. Recognizing that decisions involve trade-offs that must be weighed by decision makers is crucial to identifying alternatives that best balance multiple management objectives. Given uncertainty about the population dynamics of blood-feeding arthropods, an adaptive management approach could offer substantial benefits.  相似文献   

17.
Translocation, the intentional release of captive-propagated and/or wild-caught animals into the wild in an attempt to establish, reestablish, or augment a population, is a commonly used approach to species conservation. Despite the frequent mention of translocation as an aid in threatened or endangered species recovery plans, translocations have resulted in the establishment of few sustainable populations. To improve the effectiveness of translocation efforts, it is essential to identify and adopt features that contribute to successful translocations. This study analyzed 148 translocations of the endangered Gila topminnow (Poeciliopsis occidentalis) to identify various factors that have significantly influenced translocation success. We quantified success as the "persistence time" of translocated populations and used survival analysis to interpret the role of several factors. The following factors affected persistence times of translocated populations: season in which the fish were translocated, habitat type of the translocation site, and genetic origin of the fish stocked. In general, factors associated with stocking, the population stocked, and the site of translocation can significantly affect the persistence of translocated populations and thus increase the probability of translocation success. For Gila topminnow, future translocations should be undertaken in late summer or fall (not early summer), should occur into ponds (not streams, wells, or tanks), and should generally utilize individuals from genetic lineages other than Monkey Spring. For other species, a key lesson emerging from this work is that life history attributes for each translocated species need to be considered carefully.  相似文献   

18.
Conservation Prioritization Using GAP Data   总被引:7,自引:0,他引:7  
Data collected by the Gap Analysis Program in the state of Idaho (U.S.A.) are used to prioritize the selection of locations for conservation action and research. Set coverage and integer programming algorithms provide a sequence of localities that maximize the number of species or vegetation classes represented at each step. Richness maps of vegetation cover class diversity, terrestrial vertebrate species diversity ("hot spot analysis"), endangered, threatened, and candidate species diversity, and unprotected vertebrate species diversity ("gap analysis"), when prioritized, show a rapid accumulation of species as more localities are chosen for terrestrial vertebrates and unprotected vertebrates. Gap analysis identifies four target areas ("gaps") that include 79 of the 83 vertebrate species not currently protected. Accumulation of vegetation cover classes and endangered, threatened, and candidate species is much slower. Sweep analysis is used to determine how well prioritizing on one component of diversity accumulates other components. Endangered, threatened, and candidate species do not sweep total vertebrates as well as unprotected vertebrates do, but are better than vegetation classes. Total vertebrates sweep endangered, threatened, and candidate species better than unprotected vertebrates do, which in turn are better than vegetation classes. We emphasize that prioritization must be part of conservation efforts at multiple scales and that prioritization points out important localities where more detailed work mast be undertaken.  相似文献   

19.
Abstract: A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree‐based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological‐diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non‐native species). We quantified the economic returns from agriculture and from carbon plantings (monoculture and mixed tree and shrubs) under six carbon‐price scenarios. We also identified high‐priority locations for restoration of cleared landscapes with mixed tree and shrub carbon plantings. Depending on the price of carbon, direct annual payments to landowners of AU$7/ha/year to $125/ha/year (US$6–120/ha/year) may be sufficient to augment economic returns from a carbon market and encourage tree plantings that contribute more to the restoration of natural systems and endangered species habitats than monocultures. Thus, areas of high priority for conservation and restoration may be restored relatively cheaply in the presence of a carbon market. Overall, however, less carbon is sequestered by mixed native tree and shrub plantings.  相似文献   

20.
Under Chinese culture it is believed that herbal medicine is always safe and wild food is always healthy. Generally, the rarer a plant, the higher its value. The booming economy in China has promoted tourism development in wilderness areas and wild medicinal and food plants are part of the attraction to tourists. Conflicts between wild plant exploitation and protection have emerged in many parts of China, such as Changbai Mountain. Changbai Mountain supports numerous medicinal and food plants but many have become rare and endangered. This paper numerically evaluates 30 plant species that have relatively high conservation value for each type (medicinal, ornamental and food), and briefly describes the uses of four to five top ranked species per type that need more protection on Changbai Mountain. This paper also addresses some tree species with important timber values on Changbai Mountain. Over 90% of China's medicinal, ornamental and food plant species, as well as valuable timber trees are found in the conifer–broadleaf mixed forest zone across the boundary of Changbai Mountain Nature Reserve. It is a major challenge to protect the native biodiversity of mixed forest on Changbai Mountain and more efforts need to be made to protect rare and endangered plant species with high economic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号