共查询到18条相似文献,搜索用时 46 毫秒
1.
高压管道天然气泄漏扩散过程的数值模拟 总被引:3,自引:2,他引:3
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可 相似文献
2.
建立了埋地中压天然气管道发生泄漏时时的数学模型,将土壤视为各向同性的多孔介质,采用FLUENT对天然气在土壤中的扩散规律及浓度分布进行模拟,分析不同时刻地表的危险区域范围,并对比了不同管道压力、泄漏孔径大小、泄漏位置等工况下危险半径随时间的变化。结果表明:管道压力越大,泄漏的体积流量越大,同一时间危险范围越大;相同的泄漏压力下,泄漏孔径对危险半径没有很大影响;不同泄漏孔位置,泄漏初期向上开口时危险半径最大,一段时间后向下开口危险半径最大。 相似文献
5.
架空及埋地天然气管道泄漏扩散数值研究 总被引:1,自引:0,他引:1
天然气在管道运输过程中,由于含硫等腐蚀性气体对管道内壁的腐蚀作用,在管内其他压力的作用下,会引起穿孔泄漏。泄漏后的天然气扩散后,可能会引发火灾、中毒或爆炸。因此,进行天然气管道泄漏扩散及数值模拟研究,对管道输送安全运营和保障人生财产安全意义重大。该文利用CFD软件对架空及埋地含硫天然气管道穿孔泄漏后的甲烷、硫化氢气体的扩散进行了数值模拟。结果表明,受土壤毛孔阻力的影响,埋地天然气管道泄漏爆炸范围比架空天然气管道泄漏要小,但其在地面的影响时间长,硫化氢的中毒范围比架空要低30m左右。为天然气的安全输送及环境保护提供了理论依据。 相似文献
6.
为了能够准确的估算输送天然气的管道因泄漏事故导致的损失,就必须建立合理和精确的输气管道泄漏扩散模型。运用流体动力学软件Fluent模拟处于坡面的天然气管道发生破裂时的泄漏扩散规律,得到天然气在泄漏孔径(0.1m,0.18m,0.24m,0.3m)、风速(0 m/s,4m/s,8m/s,10m/s)和泄漏初速度(179m/s,314m/s)对扩散过程的影响,得到坡面天然气管道泄漏扩散规律。研究结果不仅为预测坡面天然气管道泄漏扩散的影响提供了依据,而且对于认识坡面天然气管道泄漏扩散规律、为相关安全事故的预警和救援具有指导意义。 相似文献
7.
针对架空管道天然气泄漏问题,考虑管道自身对泄漏扩散的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,为提高模拟可信性和合理性,先对计算流域风场进行稳态模拟,再对天然气泄漏扩散过程进行瞬态模拟,分析天然气泄漏扩散规律及风速对泄漏扩散的影响。结果表明:在稳态风场模拟中,管道附近风场受管道影响十分明显,管道上下侧面风速极高;在瞬态天然气泄漏扩散模拟中,天然气泄漏初期的扩散受风速影响明显,验证了先进行稳态风场模拟的必要性,泄漏扩散达到稳定状态后出现气云沉降、单侧分布、尾部分叉、风速影响扩散距离的特征;同等风速条件下,较小浓度边界扩散范围大,达到稳定所需时间短,同等浓度边界条件下,风速与扩散影响面积和浓度边界达到稳定所用时间成反比。 相似文献
8.
9.
针对架空天然气管道泄漏引起的火灾爆炸问题,采用事件树分析泄漏扩散引起的事故后果,并在数值模拟中着重分析了模拟数学模型的选择。在三种不同泄漏孔径、两种不同风速、两种不同运行压力条件下分别应用ALHOA软件对事故后果进行数值模拟,结果表明:泄漏孔径、运行压力与危害影响范围成正比关系;在闪火和蒸气云爆炸中,风速与危害影响范围成反比关系,而风速对射流火灾的热辐射范围基本没有影响。 相似文献
10.
11.
为了掌握埋地穿越段天然气管道泄漏扩散特性、防止因管道泄漏引起的火灾爆炸等事故发生,研究了埋地穿越段天然气管道泄漏扩散的机理。针对埋地穿越段天然气管道泄漏扩散问题,运用多孔介质模型,结合三大守恒方程,构建了基于计算流体力学的数值模型,探讨了大小孔隙率特性下,对非线性对流项和压力梯度项分别采用4种不同离散格式组合方式时的天然气体积分数分布,并与试验进行对比分析。以泰州至戴南的埋地穿越段天然气管道泄漏进行实例研究。结果表明:大孔隙率特性下,一阶standard格式在精度和计算速度上要优于其他离散格式,与试验结果更加接近;小孔隙率特性下,二阶presto!格式相比其他几种压力离散方式具有更高的求解精度。 相似文献
12.
为了研究埋地燃气管道泄漏燃气在非稳态泄漏条件下的扩散行为,基于燃气管道非稳态泄漏大孔模型,应用CFD分别求解土壤和大气扩散方程,通过丙烷地面扩散通量耦合了土壤和大气环境,进行了泄漏扩散的数值模拟,所得模拟计算结果与地上泄漏扩散数值模拟结果进行了对比分析。研究结果表明:耦合模拟条件下,风速仍是影响丙烷扩散距离和高度的主要因素;温度和相对湿度对丙烷扩散有相对较小的影响;与埋地泄漏相比,不同条件下地上泄漏的扩散距离和扩散高度均有误差,水平扩散距离误差普遍较大,扩散高度个别情况下误差较大;地上泄漏条件下的模拟结果数值偏大,对事故的预测和评估准确性会产生显著影响。 相似文献
13.
为研究泄漏孔的各种因素对深埋土体中燃气管道泄漏的具体影响,采用1个包含燃气管道的三维模型,研究单个泄漏孔的大小、位置、形状对于埋地燃气管道泄漏的影响,并建立大小相等的双泄漏孔的燃气管道,确定双泄漏孔间距对于燃气泄漏扩散的影响。结果表明:泄漏孔越大,燃气在土壤中的扩散速度越快,且泄漏孔的大小对深埋燃气管道泄漏的影响最大;泄漏孔位置的影响次之,顶部与侧壁的泄漏孔扩散速度相差无几,底部泄漏孔的扩散速度远低于前2者;双泄漏孔间距的影响较小,双泄漏孔的距离越小,甲烷的扩散速度越快;泄漏孔形状对于深埋燃气管道泄漏扩散的影响非常小。 相似文献
14.
针对目前城镇埋地管道天然气泄漏研究模拟工况简单、可信性较低等问题,考虑障碍物对环境风场的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,将模拟过程分为环境风场的稳态模拟和管道泄漏扩散的瞬态模拟两步,分析天然气泄漏扩散规律。结果表明:在风场稳态模拟中,建筑物附近风场受干扰明显,上游形成小范围的低速滞留区,下游形成较长的尾迹。在天然气泄漏扩散瞬态模拟中,土壤层天然气受风速影响较小,气体在近地面及贴近建筑物侧积聚,扩散范围随时间逐渐趋于稳定,泄漏扩散达到稳定后表现出土壤层积聚、气云沉降、贴近建筑物积聚、气云扩散局限性的特征。风速主要影响天然气的扩散高度,对水平方向的扩散范围影响较小,风速与天然气扩散高度成反比。 相似文献
15.
为研究不同的多点泄漏工况对管道流动参数的影响,基于流动方程建立数学模型,讨论泄漏后压力下降幅值与泄漏位置、泄漏点数的关系,在室内输气环道采集多点泄漏工况下的压力信号并对理论分析结果进行验证。结果表明:泄漏点的上游和下游压力均减小,越靠近泄漏点压力降越大;2个泄漏点之间压力也下降,越靠近上游泄漏点,压力下降幅度越大;泄漏点距起点越近,泄漏引起的压力降低幅值越大。压力下降的幅值受距离起点最近的泄漏点位置影响最大,且随着泄漏点数的增多而增大。 相似文献
16.
采用有限容积法建立海底饱和含水淤泥多孔介质的流固耦合传热模型。利用FLUENT软件数值模拟了海底埋地输油管道输送过程中海泥温度场变化及原油在海泥中的分布规律。分析了原油泄漏后在海水中的分布规律。对泄漏后海泥温度场的模拟表明:管道泄漏后,一定时间内管道周围海泥温度波动比较剧烈,由于受海底温度的影响,泄漏前锋原油温降较快,热影响区范围变化逐渐趋于平稳。且随泄漏位置的不同,海泥温度场变化及海泥原油分布差异较大。当原油从海底海泥介质中到达海水底层后,在海水浮力的作用下流向海面,流动过程受到海水流动速度海平面风速等因素的影响。为以温度传输为基础的海底埋地管道泄漏检测提供了一定的理论基础。 相似文献
17.
为了研究管道异常泄漏时天然气的扩散情况,采用Fluent软件模拟研究不同压力条件下气体在管舱内的浓度分布特性,核算保护半径为7.5 m时的报警探测器在灾变时的响应时间,以达到指导报警探测器设计的目的。结果表明:当泄漏压力为103.3 kPa,200.0 kPa时,对应的报警响应时间分别为2.15 s,0.45 s,报警响应时间随着泄漏压力的增大而减小,在常规中压输出压力下,响应时间最大值为2.15 s;同一泄漏压力下,管舱内气体扩散距离与泄漏持续时间成正相关;报警探测器的响应浓度以爆炸下限的20%为推荐值。 相似文献
18.
天然气管道失效造成泄漏爆炸给周围人员带来非常严重的危害,对其危害范围的研究对输气管道设计和运行具有重要的意义。常见的天然气管道泄漏爆炸伤害半径计算方法有蒸气云爆炸(VCE)定量评价模型、TNO多能法评价模型、API pub 581定量后果评价模型和炸药爆炸经验公式。为验证不同评价模型在受限空间的预测效果,利用天然气爆炸试验台进行了受限空间爆炸实验,得到最大压强与距离经验关系,计算出天然气浓度为7%、9%和11%情况下爆炸死亡半径。计算结果与不同经验模型预测结果比较,表明当天然气浓度为7%~11%时,蒸气云爆炸(VCE)定量评价模型和炸药爆炸经验模型与实验结果最为接近,误差分别为-113%和189%,TNO多能法评价模型和API pub 581定量后果评价模型预测结果偏小。结论对有限空间天然气管道爆炸研究具有实际意义。 相似文献