首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
瓦斯压力对煤与瓦斯射流突出能量的影响   总被引:1,自引:0,他引:1  
瓦斯压力是煤与瓦斯突出的主要动力源,其与突出能量的关系尚不明确。将煤与瓦斯突出视为煤-瓦斯气固两相射流突出,在分析煤与瓦斯射流突出过程的基础上,建立了煤与瓦斯射流突出数值模型,给出了突出能量表达式。通过理论分析、数值模拟相结合,得到了瓦斯压力对煤与瓦斯突出能量、突出强度、瓦斯涌出量等参数的影响规律。结果表明,突出发生时,突出能量具有波动性,即以突出口为界存在能量集聚骤升区和能量释放衰减区。能量集聚骤升发生在突出孔洞至突出口段,瓦斯-煤两相流突出速度成倍增大;能量释放主要发生在突出口附近和巷道中,瓦斯-煤两相流突出速度逐渐减小。煤与瓦斯射流突出产生强烈涡旋,在顶板、底板处尤为显著,与现场观察到的突出后顶板有摩擦和划痕、底板突出煤粉有分选现象一致。瓦斯压力与突出能量间呈线性增加关系,与突出强度和瓦斯涌出量均呈幂指数增加关系。计算得到的煤与瓦斯射流突出能量量级与前人结论基本吻合,结果可为煤与瓦斯突出能量预测提供参考。  相似文献   

2.
为了更好地认识和防治煤与瓦斯突出,利用扫描电子显微镜和静态液氮吸附仪研究一种构造软煤的微孔结构特征,同时利用自主搭建的大型石门揭煤相似模拟试验系统,研究石门揭露构造软煤过程中瓦斯压力的变化规律。在试验研究的基础上,分析构造软煤的微孔特性对瓦斯赋存的影响,以及瓦斯在石门揭露构造软煤诱发煤与瓦斯突出中的作用。通过试验得出:构造软煤的结构破坏严重,微孔发育并且为特殊瓶颈的不透气孔,为瓦斯的赋存提供了极为有利的条件;瓦斯在突出的启动和发展过程中起重要作用,即在瓦斯压力突然降低、释放膨胀潜能时,瓦斯压力作为动力来源,加速了煤体向采掘空间抛出的过程。  相似文献   

3.
煤层瓦斯压力测定中的钻孔注浆新技术研究   总被引:2,自引:1,他引:1  
为简化复杂地质条件下测定煤层瓦斯压力的工序并提高高压注浆的成功率和可靠性,以达到准确、快速测量瓦斯压力的效果,基于胶囊注水封孔器的原理和特性及高压注浆的现场情况,提出了一种新型的注浆方法。通过钻孔注浆模型的建立和数值分析、模拟,发现新式注浆工艺可满足10 MPa的注浆压力,能有效封堵钻孔中的裂隙。现场对比实验证明新式注浆方法较传统注浆方法减少了工序,提高了安全性和可操作性,节省时间约35 h。新型注浆方法在复杂地质条件下可提高测压工作整体的效率。  相似文献   

4.
在综合分析煤与瓦斯突出多种影响因素的基础上,将Fisher判别分析应用到煤与瓦斯突出预测中,结合我国典型煤与瓦斯突出煤矿17个突出实例,建立了煤与瓦斯突出预测的Fisher判别分析模型,模型回代预测的误差率为0。应用该模型对云南恩洪煤矿8个突出实例进行预测,并与单项指标法、综合指标法、BP网络进行比较。结果表明,Fisher判别分析模型具有较高的可靠性和精确性,能对煤与瓦斯突出进行有效预测。  相似文献   

5.
为了研究平顶山东部矿区地应力场特征,以及地应力对煤与瓦斯突出的影响,利用地应力实测资料,运用理论分析和数理统计计算相结合的方法,系统研究了东部矿区地应力的分布规律;并且进行了地应力区块划分,揭示了东部矿区地应力在突出中的作用。结果表明:1)东部矿区地应力场以水平构造应力为主,最大主应力方向为NEE-SWW向,最大水平主应力百米梯度为5.4 MPa左右,该区域内集聚了较高的水平构造应力,应力场类型为大地动力场;2)依据最大水平主应力随埋深增加而增大的应力梯度线,将东部矿区划分为应力升高区和应力梯度区;3)应力升高区由于地应力集中,提供了突出的动力,构造煤的发育则减少了突出阻力,造成了该区域频繁发生突出事故,突出的主导因素为地应力。  相似文献   

6.
目前,我国石门揭煤工作面突出事故仍时有发生。为了研究石门揭煤工作面煤与瓦斯突出(以下简称"突出")预测问题,首先,根据工作经验指出我国《防治煤与瓦斯突出规定》中2种预测方法(综合指标法、钻屑瓦斯解吸指标法)存在的不足,即预测指标缺乏理论依据、临界值往往难以通过试验考察确定;其次,建立了石门揭煤工作面突出预测的物理模型,认为突出主要是爆破卸压增渗与瓦斯渗流产生的剪应力达到了煤体的剪切强度所致(突出的必要条件而非充要条件);第三,采用变分法求解强非线性一维平面瓦斯渗流偏微分方程,获得包括非线性特性的自模拟解(近似解析解);最后,利用自模拟解等建立了石门揭煤工作面突出预测的临界条件,得到了瓦斯压力的临界值p0max与煤的坚固性系数f的平方成正比的结论。介绍了俄罗斯现行防突指南中的临界条件(p0max1.4f2)及有关情况,建议作为综合指标法等的辅助指标用于石门揭煤工作面突出预测,也可供斜井、立井揭煤工作面突出预测参考。  相似文献   

7.
基于瓦斯涌出时间序列的煤与瓦斯突出预测方法研究   总被引:2,自引:2,他引:0  
基于瓦斯涌出时间序列(简称G序列),研究了利用G线图、移动平均线模型和综合法进行煤与瓦斯突出预测的方法.研究表明:G序列G线图法可实时反映瓦斯涌出的细小变化情况,从而可对瓦斯突出前的异常变化特征及时辨识,但是由于瓦斯涌出影响因素复杂,短期内的异常波动并不一定是突出信号,从而容易造成误判.而移动平均线模型以均线系统为基础,通过判别瓦斯涌出浓度在一定时期内的总体变化趋势,揭示煤体中影响煤与瓦斯突出的各因素与突出之间的关系.综合法利用G线图结合移动平均线模型进行突出预测,除G线图和移动平均线本身提供的信息外,结合G线与不同周期的移动平均线的相互穿越发出的一些反转信号,能够更为准确地预报瓦斯突出.  相似文献   

8.
基于神经网络的煤与瓦斯突出预测模型   总被引:7,自引:1,他引:7  
在全面分析了煤与瓦斯突出影响因素的基础上 ,提出了煤与瓦斯突出预测的人工神经网络模型。介绍了突出特征指标的选取及表示方法与推理过程。实例分析表明 ,模型精度很高 ,可用于工作面煤与瓦斯突出预测 ,并分别给出图 2 ,表 3,文献 5  相似文献   

9.
人工神经网络在煤与瓦斯突出预测中的应用   总被引:4,自引:0,他引:4  
由于煤与瓦斯突出发生机理的复杂性,传统预测方法的应用受到很大的限制,而人工神经网络理论以其高度非线性映射的特性为解决这一问题提供了新的途径。以突出预测指标为基础,利用多层反向传播神经网络(BP网络)模型实现对突出危险性的预测。实例分析表明,模型精度很高,可用于工作面煤与瓦斯突出危险性的预测。  相似文献   

10.
煤与瓦斯突出严重地影响着矿井的安全生产,必须做好防治工作。防治工作的基础是准确地预测煤与瓦斯动力现象。该文通过考虑影响煤与瓦斯突出的定量和定性因素,建立了开拓新区煤与瓦斯突出综合评价的模型,该模型经在矿井应用,证明该技术可靠易行。  相似文献   

11.
掌握煤与瓦斯突出危险性和主要影响因素对突出防治至关重要。运用安全系统工程重要的系统分析方法——事故树分析法对"三软"煤层煤与瓦斯突出危险性进行系统分析,构建了"三软"煤层条件下煤与瓦斯突出的事故树,进行了定性分析和定量计算。结果表明,煤与瓦斯突出发生的概率为0.216 5,导致突出的可能途径有24种,预防突出的可能方案有5种,并计算出了各基本事件的结构重要度、概率重要度和临界重要度,确定了"三软"煤层中影响煤与瓦斯突出各因素的重要程度。  相似文献   

12.
煤层注水抑制瓦斯解吸效应试验研究   总被引:4,自引:0,他引:4  
煤层注水宏观上具有疏松煤体、卸压排放瓦斯的效应,这是人们对煤层防突机理的初步认识。为进一步认清煤层防突机理,采用实验室试验和现场测试相结合的方法,在实验室中使干燥煤样在煤样罐中预先吸附瓦斯来模拟原始煤层,然后向试验煤样高压注入水分,注水后再测试瓦斯解吸等温特性曲线、瓦斯解吸速度及残存瓦斯含量。测验结果表明,注水后瓦斯解吸等温特性曲线上移,初始瓦斯解吸速度变小且衰减速度变慢,残存瓦斯含量增加,现场测试钻屑瓦斯解吸指标值降低。通过分析测试结果认为,注水后,水分进入并留存在煤体的微孔隙中,对煤层瓦斯具有抑制解吸效应,而抑制解吸效应可以降低瓦斯初始解吸速度,使瓦斯解吸过程变缓,避免瓦斯突然快速解吸。这是煤层注水防治煤与瓦斯突出的一项重要机理。  相似文献   

13.
小构造附近是瓦斯灾害容易发生的危险地带,探明煤层小构造对煤矿的安全生产至关重要。基于古汉山矿二1煤层瓦斯抽采工程特点,分析利用瓦斯抽采穿层钻孔进行地质构造探测的可行性,根据试验工作面、底抽巷、瓦斯抽采穿层钻孔空间关系,建立煤层小构造预测数学模型及预测方法。结合试验工作面瓦斯抽采穿层钻孔现场施工数据特点,分析钻孔误差及校正方法,绘制煤层底板三维曲面图、煤层底板等高线图、煤层底板趋势面残差图及煤层厚度等值线图。根据煤层底板预测图件,对小构造分布做出了综合判断:在工作面走向通尺360~390 m、倾向上距离运输巷35 m处,可能存在落差1. 5 m、走向N45°W、延伸长度20 m左右的小断层。现场实际揭露地质情况与理论预测结果基本吻合,工作面推进与小构造距离小于20 m时,瓦斯突出危险程度明显增大。  相似文献   

14.
根据鹤壁矿区实测煤层瓦斯含量和瓦斯压力结果,从力能角度分析了地应力、瓦斯、煤体结构对煤与瓦斯突出的影响,确定了地应力为鹤壁矿区煤与瓦斯突出的主控因素。受区域地质构造的控制,南部矿井构造应力大,瓦斯含量高,煤岩体弹性潜能、瓦斯膨胀能大;且构造煤普遍发育,煤体破碎功小。基于力能角度分析,南部矿井在埋藏较浅处,突出动力能量即大于突出阻力能量,是其始突深度较浅的主要原因,鹤壁矿区始突深度呈现南浅北深的特点。在地应力控制作用的基础上,结合三矿实测瓦斯压力、瓦斯突出能量分析,确定三矿在煤层底板标高-510 m以深为突出危险区。  相似文献   

15.
矿井瓦斯爆炸事故是煤矿安全生产中最严重的事故之一.为确保事故后应急救援的高效开展及减少应急物资调度过程中的经济损失,在以调度时间为第一的前提下,结合煤矿瓦斯爆炸事故实际,引入伤亡性和经济性两个优化目标,构建了一种在多出救点、多物资和多受灾点约束条件下的多目标应急物资调拨模型,并运用加权算法基本思想,确定了决策效用函数,同时结合瓦斯爆炸事故的时间紧迫度,在保证物资连续消耗的条件下,求解最优物资调度方案,并通过实例验证了可行性.  相似文献   

16.
Gas pressure is an important index for evaluating the outburst risk and determining the gas content in coal seams. It is recommended to predict coal-seam gas pressure of the workface at deep levels before extending mining activities to deeper levels. According to the prediction results, measurements are taken for gas outburst prevention and control and for workload estimation. At present, regression methods are always used to process the numerous gas pressure data for prediction. Because there are many factors that influence the gas pressure which could lead to a deviation from actual values, the measured data do not possess basic conditions for regression methods; this can cause unexpected dangers if the methods are adopted.Based on a statistical analysis of actual measured results of coal-seam gas pressure in a same geological section in certain coal mine, two symbol measured points are selected to make a line for prediction, i.e. safety line, and the other measured points should be below the line except the abnormal points due to the confined water. It has been successfully applied in numerous coal mines in China. Particularly, this method is analyzed in this paper for the case of the No. 82 coal seam in the Taoyuan coal mine in Huaibei coalfield, China. By comparatively analyzing the relationship between gas pressure and depth from surface using regression methods, it is found that the safety line method could lead to a better prediction for deep coal-seam gas pressure, and therefore promote early warning ability and mining safety.  相似文献   

17.
基于扩散理论和热力学基本原理建立了瓦斯解吸过程温度变化公式,以及温度变化与瓦斯膨胀能、瓦斯解吸量的关系式,在此基础上研究了煤粒粒度、瓦斯压力、吸附常数a、扩散系数对解吸过程温度变化的影响及温度变化与煤与瓦斯突出的关系.结果表明:随煤粒粒度减小,瓦斯压力、瓦斯含量增大,扩散能力增强,瓦斯解吸引起的温度下降幅度增大.随解吸过程中温度降低,瓦斯解吸量、瓦斯膨胀能呈明显增大趋势,由此可见,解吸过程中温度下降幅度越大,煤层煤与瓦斯突出危险性越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号