首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated the ability of the non-pathogenic fungus Fusarium lateritium to either degrade or modify aromatic substances in olive-mill dry residue (DOR) and to reduce its phytotoxicity. The 80% reduction of ethylacetate extractable phenols in DOR colonized by the fungus for 20 weeks appeared to be due to polymerization reactions of phenol molecules as suggested by mass-balance ultrafiltration and size-exclusion chromatography experiments. Several lignin-modifying oxidases, including laccase, Mn-peroxidase and Mn-inhibited peroxidase were detected in F. lateritium solid-state cultures. Tests performed with tomato seedlings in soils containing 6% (w/w) sterilized non-inoculated DOR showed that the waste was highly phytotoxic. By contract, F. lateritium growth on DOR for 20 weeks led to a complete removal of the waste toxicity and to a higher shoot dry weight of tomato plants than that obtained in the absence of DOR.  相似文献   

2.
The presence of high levels of Cu in soil decreases the shoot and root dry weights of Eucalyptus globulus. However, higher plant tolerance of Cu has been observed in the presence of the arbuscular mycorrhizal (AM) fungus Glomus deserticola. The hyphal length of G. deserticola was sensitive to low Cu concentrations, and the percentage of AM root colonisation and the metabolic activity of the AM fungus were also decreased by Cu. Therefore, a direct effect of Cu on the development of the AM fungus inside and outside the root cannot be ruled out. E. globulus colonised by G. deserticola had higher metal concentrations in the roots and shoots than do non-mycorrhizal plants; however, the absence of a higher root to shoot metal ratio in the mycorrhizal plants (1.70 ± 0.11) indicated that G. deserticola did not play a filtering/sequestering role against Cu. The saprobe fungi Coriolopsis rigida and Trametes versicolor were able to remove Cu ions from the asparagine–glucose growth media. However, plants inoculated with C. rigida and T. versicolor did not accumulate more Cu than non-inoculated controls, and the growth of the plant was not increased in the presence of these fungi. However, C. rigida increased the shoot dry weight, AM root length colonisation, and metabolic mycelial activity of plants colonised with G. deserticola in the presence of Cu; only this saprobe-AM fungus combination increased the tolerance of E. globulus to Cu. Inoculation with G. deserticola and C. rigida increased the E. globulus Cu uptake to levels reached by hyperaccumulative plants.  相似文献   

3.
Tomato and lettuce plants were exposed to vapour of the free acid of [14C-phenyl] 2,4-D at concentrations in the range 1-600 pg litre(-1) for periods of 6, 24 or 72 h. The rate of uptake of radiolabel by tomato was about twice that by lettuce at the same vapour concentration. Uptake rates were linearly related to external vapour concentration. The relationship between uptake and vapour concentration of 2,4-D for the two species was similar to published values for the butyl and iso-octyl esters. The distribution of herbicide residue in the plant immediately after exposure indicated that the apical leaves of lettuce are particularly active in assimilating vapour, whereas for tomato, leaf position had no influence. Forty days after exposure, both species showed symptoms of toxicity and reduction in shoot dry weight typical of similar doses of 2,4-D esters. It is concluded that the vapour of 2,4-D represents a potential hazard to susceptible plants, and that further work is needed to determine the conditions likely to lead to the production of vapour of the free acids of phenoxyalkanoic herbicides following spraying.  相似文献   

4.
A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg−1) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.  相似文献   

5.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

6.
The in vivo conversion of dry olive mill residue (DOR) by wood- and dung-dwelling fungi − Auricularia auricula-judae, Bjerkandera adusta and Coprinellus radians − increases peroxidase secretion up to 3.2–3.5-fold (∼1.3, 3.5 and 7.0 U g−1 DOR for dye-decolorizing peroxidase, manganese peroxidase and aromatic peroxygenases, respectively). The incubation of DOR with these fungi produced a sharp decrease in total phenolic content (100% within 4 wk), a reduction in phytotoxicity as well as a certain degree of plant growth caused by the stimulating effect of fungal-treated DOR. These findings correlate with a characteristic shift in the fragmentation pattern of water-soluble aromatics (detected at 280 nm) from low (0.2, 1.5 and 2.2 kDa, respectively) to high molecular mass (35 to >200 kDa), which demonstrates the presence of a polymerization process. Phenol-rich agricultural residues are a useful tool for enzyme expression and production studies of peroxidase-producing Agaricomycetes which could make DOR a valuable organic fertilizer.  相似文献   

7.
In soils containing elevated levels of zinc, plant growth may be impaired because of Zn interference with P uptake by plants and because of detrimental effects of Zn toxicity itself. Because mycorrhizal fungi are known to improve uptake of plant P, the beneficial effects of mycorrhizal symbiosis on Zn tolerance of Andropogon gerardii Vitm. were assessed in soil amended with various levels of Zn and P. In the absence of P amendment, mycorrhizal fungi stimulated plant growth, but the degree of benefit depended on the inoculum source and the soil Zn level. Mycorrhizal fungi from a Zn contaminated site were more effective in increasing plant biomass at higher levels of Zn in the soil, whereas plant growth at lower levels of soil Zn was greater with mycorrhizal fungi from a non-contaminated site. Mycorrhizal fungus inoculation had no effect on shoot Zn concentration; however, inoculation significantly improved the plant P nutrition and therefore resulted in a high shoot P/Zn concentration ratio at all the soil Zn levels. To a certain extent, addition of P to the soil alleviated the Zn toxicity that had inhibited plant growth, but plant biomass tended to decrease with increasing soil Zn levels. Although P amendment improved P uptake, it also resulted in increased shoot Zn uptake.  相似文献   

8.
9.
The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24mgkg(-1) compared with values for TNB or TNT ranging from 43 to 62mgkg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis).  相似文献   

10.
The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.  相似文献   

11.
A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites.  相似文献   

12.
The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.  相似文献   

13.
The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg(-1) soil) and Cd (0, 10 and 25 mg kg(-1) soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids.  相似文献   

14.
Bi YL  Li XL  Christie P 《Chemosphere》2003,50(6):831-837
In a pot experiment, red clover (Trifolium pratense) was grown in sterilized Zn-amended low available P soil (0, 50 or 400 mg Zn kg(-1)) with or without 100 mg kg(-1) added P and with or without inoculation with the arbuscular mycorrhizal (AM) fungus G. mosseae. When the plants were harvested after 40 days, AM colonization of the roots was still at an early stage, with only 14-38% of total root length colonized on average. AM colonization was highest in low-P soil, and was lowest in soil amended with 400 mg Zn kg(-1). Shoot yields were highest in AM plants with added P, but root yields were unaffected by AM inoculation. Shoot and root yields were higher with 100 mg added P kg(-1) soil, but lower with 400 mg Zn kg(-1) than 50 mg Zn kg(-1) or controls unamended with Zn. Shoot and root P concentrations were seldom higher in AM plants, but shoot P offtakes were higher in AM plants with added P. Concentrations of Zn and Cu were much higher in the roots than in the shoots. Shoot and root Zn and shoot Cu were lower, but root Cu was higher, in AM plants. Soil residual pH after plant growth was higher in AM treatments, and residual total Zn was also higher, indicating lower Zn uptake by AM plants. Soil solution pH was higher in AM treatments, and soil solution Zn was lower in the presence of mycorrhiza. The results are discussed in terms of AM protection of the plants against excessive shoot Zn uptake.  相似文献   

15.
Some saprobe fungi (Phlebia radiata, Trametes versicolor, Coriolopsis rigida, Pycnoporus cinnabarinus, Fomes sclerodermus or Pleurotus pulmonarius) were able to bioconvert the ethyl acetate fraction (DEAF) and the corresponding aqueous exhausted fraction (EAF) of dry olive mill residue (DOR), reducing their phytotoxicity on Lepidium sativum seeds. Large amount of hydroxytyrosol together with other eight monomeric phenols were found in the native DEAF fraction, which represents a good source of antioxidants. P. radiata, T. versicolor and F. sclerodermus caused an effective phytotoxicity reduction of EAF in the concentration range of 25-3 gl(-1). In particular, in the range between 12.5 and 3 gl(-1), the EAF samples inoculated with P. radiata and F. sclerodermus surprisingly stimulated the germinability of L. sativum, suggesting their use as a potential biofertilizer. This is the first report which showed the bioconversion of the above fractions in shorter time with respect to the previous findings concerning DOR. The possible implications of laccase in the decrease of DEAF and EAF phytotoxicity was also discussed.  相似文献   

16.
Phytoremediation techniques are receiving more attention as decontaminating strategies. Phytoextraction makes use of plants to transfer contaminants from soil to the aboveground biomass. This research is devoted to study the effects of arbuscular mycorrhizae (AM) on growth and As hyperaccumulation in the Chinese brake fern Pteris vittata. We grew for 45 days P. vittata sporophytes, infected or not infected with the AM fungi Glomus mosseae or Gigaspora margarita, in a hydroponic system on quartz sand. As-treated plants were weekly fed with 25 ppm As. The As treatment produced a dramatic increase of As concentration in pinnae and a much lower increase in roots of both mycorrhizal and control plants. Mycorrhization increased pinnae dry weight (DW) (G. margarita = G. mosseae) and leaf area (G. margarita > G. mosseae), strongly reduced root As concentration (G. mosseae > G. margarita), and increased the As translocation factor (G. mosseae > G. margarita). The concentration of phosphorus in pinnae and roots was enhanced by both fungi (G. margarita > G. mosseae). The quantitatively different effects of the two AM fungi on plant growth as well as on As and P distribution in the fern suggest that the As hyperaccumulation in P. vittata can be optimized by a careful choice of the symbiont.  相似文献   

17.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

18.
In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 microm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed.  相似文献   

19.
The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants.  相似文献   

20.
Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号