首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
污泥龄对A/A/O工艺反硝化除磷的影响   总被引:12,自引:0,他引:12  
徐伟锋  陈银广  张芳  顾国维 《环境科学》2007,28(8):1693-1696
以实际生活污水培养驯化污泥的小试规模A/A/O工艺为研究对象,进行了污泥龄(SRT)为8、10、12和15 d时对反硝化除磷的影响研究.结果表明,随着污泥龄的延长,反硝化除磷对系统除磷所起的作用越大,反硝化聚磷菌缺氧利用单位PHAs的反硝化数量和吸磷量也迅速增加,聚磷菌好氧利用单位PHAs的吸磷量并没有受到影响,以SRT为12 d时反硝化除磷和系统脱氮除磷效果为最好.结果还表明,去除单位氮所需COD数量随污泥龄的延长呈减少趋势,而去除单位磷所需COD数量呈增大趋势.对于我国典型的城市污水而言,SRT为12 d和15 d时去除单位氮和磷所需的外碳源数量较8 d时要低,从而使反硝化除磷作用可真正地达到节省碳源和能源的目的.  相似文献   

2.
污泥龄对A2/O工艺脱氮除磷效果的影响   总被引:4,自引:1,他引:4  
污泥龄(SRT)作为活性污泥法设计与运行的参数已显示出比其它参数更加重要。试验以实际生活污水为对象,研究SRT分别为5、10、15、20、25、30d时,系统CODCr、NH4+-N、TN、PO43-P的去除率以及污泥特性的变化,试验期间其它运行参数保持不变。试验结果表明:SRT=15d时系统总体脱氮除磷效果最好,此时CODCr、NH4+-N、TN、PO43-P去除率分别为:93%、98%、81%、82%,并对SRT=15d时系统中氮磷的浓度变化曲线进行分析。  相似文献   

3.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:1,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

4.
SBR不同进水中反硝化除磷颗粒污泥的培养   总被引:1,自引:0,他引:1  
分别以人工配水、加Ca~(2+)人工配水和实际生活污水为进水水源,在A/O/A运行模式的3套SBR反应器(R1、R2和R3)中培养反硝化除磷颗粒污泥,研究了其生化特性和启动过程的除污性能,分析了反硝化除磷能力,最后对颗粒化机理进行了探讨,重点考察了反硝化除磷颗粒污泥启动过程中对COD、NH_4~+-N、TN和TP的去除情况.结果表明,R1~R3均在30 d内成功得到反硝化除磷颗粒污泥,颗粒污泥平均粒径大于600μm,比重和比耗氧速率较大,含水率较低;培养过程中出水COD平均值低于40 mg·L~(-1),出水TN、NH+4-N及TP平均浓度低于1 mg·L~(-1);系统稳定后一个典型周期内试验表明,COD、NH_4~+-N、TN和TP的去除效果良好,对COD、NH+4-N、TN及TP的去除率可达90%以上;R1~R3中最大比释磷速率分别达14.34、8.32和2.32 mg·g·h~(-1)(以每g MLVSS每小时释放的P量(mg)计),R1~R2中最大比吸磷速率分别达14.13和2.34mg·g·h~(-1)(以每g MLVSS每小时吸收的P量(mg)计);试验结果表明,Ca~(2+)对颗粒化有促进作用.  相似文献   

5.
温度对生物强化除磷工艺反硝化除磷效果的影响   总被引:7,自引:1,他引:7  
以处理城市污水的中试规模生物强化除磷A2/O活性污泥工艺系统为研究对象,考察了温度对系统COD去除和脱氮除磷效果的影响,特别是温度对活性污泥反硝化除磷性能的影响.结果表明,当温度从(30.9±0.8)℃降低到(9.1±0.6)℃时,A2/O系统的脱氮除磷效果显著下降,系统对TN和TP的污泥去除负荷明显下降.通过污泥反硝化除磷活性实验发现,随着温度的降低,系统中活性污泥的最大厌氧释磷速率、最大好氧吸磷速率和最大缺氧吸磷速率都降低.活性污泥中反硝化除磷菌(DPB)占聚磷菌(PAOs)总量的比例随温度降低稍有下降,但平均值仍维持在47.5%左右.用阿伦尼乌斯公式对实验结果进行拟合,得到系统中活性污泥聚磷菌厌氧释磷反应活化能Ea1为148.0 kJ· mol-1,聚磷菌好氧吸磷反应活化能Ea2为228.8 kJ·mol-1,发生在缺氧条件下反硝化除磷菌的吸磷反应活化能Ea3为315.8 kJ·mol-1.对不同温度下污泥絮体粒径分析结果表明,随温度降低,粒径分布更加集中,系统中活性污泥絮体颗粒平均粒径减小,不利于污泥絮体内部反硝化除磷缺氧微环境的形成.  相似文献   

6.
悬浮态污泥的SRT对复合式A2/O工艺性能的影响   总被引:1,自引:0,他引:1  
丁永伟  王琳  王宝贞 《环境科学学报》2005,25(12):1608-1614
采用厌氧/缺氧/好氧复合工艺(复合式A2/O工艺)及其对照工艺(传统A2/O工艺),进行了悬浮态污泥SRT的变化对系统性能影响的试验研究结果表明,悬浮态污泥浓度与其SRT的关系仍符合劳伦斯-麦卡蒂方程式的导出公式所反映的变化趋势,但其同时和反应器中填料上的生物膜数量呈相反变化趋势在总HRT为12.76 h、COD容积负荷小于1.5kg·m-3·d-1、TKN容积负荷小于0.13kg·m-3·d-1、悬浮态污泥SRT为25~5 d、水温为12~15 ℃时,悬浮态污泥SRT的变化对COD的去除几乎没有影响,出水COD均小于50 mg·L-1;但SRT的变化对氮和磷的去除有较大的影响,当悬浮态污泥SRT大于10 d时,出水NH4+-N和TN浓度分别低于15 mg·L-2和20mg·L-1,随SRT的增大,TP的去除效率下降;附着态生物膜参与硝化过程,能够提高系统总的NH4+-N去除率20%~30%.悬浮态污泥SRT宜控制为10~15 d,这可在一定程度上解决或缓解传统A2/O工艺中硝化和除磷过程对污泥龄要求的矛盾.  相似文献   

7.
填料型A~2/O工艺是在A~2/O工艺的基础上通过向厌氧池、缺氧池、好氧池中投加醛化纤维式组合填料,将传统活性污泥法与生物膜法相结合组成一套脱氮除磷的新系统,文章对填料型A~2/O工艺与传统A~2/O工艺处理生活污水的效果进行了对比研究,以及对该复合式工艺在不同硝化液回流比下反硝化除磷能力进行了分析.研究结果表明,相同条件下,填料型A~2/O工艺对生活污水的处理效果要优于传统A~2/O工艺,分别使COD和氨氮的去除率达到92.5%和93.1%.试验通过增加硝化液回流比的措施使得反硝化聚磷菌在填料上富集程度增大,当硝化液回流比为300%时,缺氧池的NO-3-N浓度为3.03 mg·L~(-1),吸磷量最大为26.28 mg·L~(-1),胞内聚合物PHB代谢活性最好,利用率最高为1.32 g·g~(-1)·L~(-1).体现了填料型A~2/O工艺具有显著的反硝化除磷效果.  相似文献   

8.
硝化液回流比对A2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以低C/N城市生活污水为处理对象,重点考察了硝化液回流比对A2/O - BCO(生物接触氧化)工艺脱氮除磷特性的影响.在A2/O反应池水力停留时间(HRT)为8h,污泥回流比为100% 条件下,将硝化液回流比分别设定为100%、200%、300%和400%进行试验.结果表明, 系统在A2/O中实现了反硝化除磷,具有很好的同步氮磷的去除效果,出水COD浓度均在50mg/L以下.上述不同硝化液回流比下总氮(TN)去除率分别为48.8%、66.5%、75.6%和62.5%,总磷(TP)去除率分别为86.0%、90.3%、91.0%和95.0%.在硝化液回流比为300%时,系统平均出水TN和TP浓度分别为14.96mg/L和0.49mg/L.系统反硝化除磷量随着硝化液回流比的增大略有增加,在硝化液回流比为400%时,反硝化除磷量高达磷总去除量的98%.  相似文献   

9.
将活性污泥法与生物膜法相结合,基于反硝化除磷原理,开发出双相序批式脱氮除磷处理工艺A2ON。着重研究生活污水COD/TN比值变化的对除磷脱氮影响。试验结果表明,该工艺处理效果稳定,对水质的适应能力强,可以降低好氧需求,较大程度地减少除磷和反硝化对碳源的竞争,同时保证了世代时间长的硝化菌可稳定生长。  相似文献   

10.
王春英 《环境科技》2009,22(6):24-27
为了进一步了解反硝化聚磷菌(DPB)污泥质量浓度(MLSS)对反硝化除磷过程的影响,进行一系列厌氧、缺氧模拟试验.研究考察DPB污泥的MLSS对厌氧释磷、缺氧反硝化吸磷的影响。结果表明:MLSS越高,释、吸磷速率及反硝化速率越高;MLSS对释、吸磷比速率和反硝化比速率的影响较小;厌氧总释磷量由污水中可利用COD的多少决定,DPB污泥的MLSS只影响到达释磷平衡的时间:污水中含氮量偏低引起反硝化吸磷段NO3^-不足时,DPB污泥厌氧释磷量高于反硝化吸磷量.MLSS越高经缺氧反硝化吸磷处理后水中含磷量越高。  相似文献   

11.
碳源浓度和污泥龄对反硝化聚磷脱氮影响研究   总被引:1,自引:2,他引:1  
利用间歇试验研究了反硝化除磷过程中有机碳源和污泥龄对脱氮除磷的影响。试验结果表明:(1)厌氧段碳源COD浓度越高(150~250mg/L),放磷越充分,则缺氧段反硝化和吸磷速率越大;但当碳源COD浓度超过200mg/L时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用。(2)在水温为15℃~25℃,污泥负荷为0.12kgCOD(/kgMLSS·d),SRT为15d,HRT为7h时,利用人工配水作为碳源,在保持较高的COD去除率的同时,总氮和总磷的去除率最高,分别在80%和88%以上。  相似文献   

12.
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.  相似文献   

13.
回流比对投料A~2/O工艺脱氮除磷影响的中试研究   总被引:2,自引:0,他引:2  
试验采用了投料A2/O脱氮除磷工艺在广州市某污水处理厂进行中试,考察了不同混合液回流比及污泥回流比对投料A2/O工艺脱氮除磷的影响。结果表明,混合液回流比对COD、TP和NH3-N影响较小,对TN的去除率影响较大,系统混合液回流比为200%时,系统处理效果最佳;污泥回流比对系统整体功能的影响较大,随污泥回流比的增大,各指标的去去除率随之增大,结合处理效果和能耗情况,污泥回流比为75%时系统效果最佳。  相似文献   

14.
为了解不同污泥龄(SRT)对同步硝化内源反硝化除磷(SNEDPR)系统脱氮除磷性能的影响,采用4组延时厌氧(180min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的SBR反应器,以实际城市污水为处理对象,考察不同的SRT(5、10、15、25 d)条件下系统的脱氮除磷性能及其污泥性状的变化情况.结果表明,当SRT≥10 d时,短SRT有利于提高PAOs的竞争优势;在SRT为15 d和10 d时,系统除磷性能均较高,尤其是当SRT=10 d时,PPAOs,An平均为68.4%,PRA和PUA分别高达31.9mg·L~(-1)和34.3 mg·L~(-1).在SRT为15 d和10 d时,系统的硝化性能不受SRT变化的影响,且在SRT=15 d时,系统具有最高的脱氮性能,TN去除率和SNED率分别平均为89.6%和71.8%.在SRT≥10 d时,系统的COD去除性能不受SRT的变化影响,去除率达78%以上;但SRT=5 d时,由于系统生物量的流失使得系统对C、N、P的去除性能均较差,SNED率和PO3-4-P去除率分别低至5.7%和0.5%.此外,在SRT=15 d时,系统污泥沉降性能最好,SV和SVI分别为20%和64 mL·g~(-1),且污泥浓度随着SRT的延长而升高;长SRT(25 d)下系统抗冲击负荷能力较强,但污泥的沉降性能变差.  相似文献   

15.
以低C/N值生活污水为处理对象,重点考察了以厌氧/缺氧(A/A)运行的ABR耦合好氧MBR系统启动过程中脱氮除磷特性及系统长期运行的稳定性.结果表明,控制ABR容积负荷(VLR)为0. 8 kg·(m3·d)-1,污泥回流比为80%,硝化液回流比从150%逐步提升稳定至300%,反硝化除磷功能区污泥停留时间(sludge retention time,SRT)为25 d,MBR溶解氧(DO)为1~2 mg·L~(-1),温度为30℃±2℃,于46 d成功富集了反硝化聚磷菌(denitrifying phosphorus bacteria,DPBs),净释磷量为20. 56 mg·L~(-1),净吸磷量达到27. 74 mg·L~(-1),批次实验表明约84. 8%的聚磷菌(PAOs)能够利用NO-3-N作为电子受体进行反硝化除磷.启动成功后稳定运行50 d,对COD、NH+4-N、TN和PO_4~(3-)-P的平均去除率分别为91. 8%、99. 0%、71. 5%和94. 2%,系统缺氧反硝化除磷去除1 mg·L~(-1)的PO_4~(3-)-P,同步消耗约0. 83 mg·L~(-1)的NO-3-N,满足同步脱氮除磷的要求.  相似文献   

16.
改进分段进水A/O生物脱氮工艺强化生物除磷   总被引:4,自引:1,他引:3  
王伟  彭永臻  殷芳芳  王淑莹 《环境科学》2009,30(10):2968-2974
采用分段进水A/O中试处理系统处理低C/N生活污水.为实现同步脱氮除磷,对分段进水A/O工艺进行改进并对改进前后系统的脱氮除磷效率进行评价.改进前分段进水A/O工艺平均TN去除率为66.52%,TP去除率为29.74%;改进后的分段进水A/O工艺不仅可以稳定地实现同步脱氮除磷,在三段进水比为0.45∶0.35∶0.20时,系统平均TP去除率达89.81%,且由于反硝化除磷的强化节省部分碳源,TN去除率达73.61%,比改进前提高7.09%.为验证不同阶段聚磷菌及反硝化聚磷菌在系统内的选择增殖情况,试验对不同运行阶段的活性污泥进行静态厌氧放磷、好氧及缺氧吸磷试验,结果表明,工艺经过改进后,聚磷菌及反硝化聚磷菌均得到较大程度地选择富集.采用改进工艺,污泥最大比好氧吸磷速率[P/(MLSS.t)]由2.34 mg/(g.h)提高到10.67 mg/(g.h),最大比缺氧吸磷速率由0.33 mg/(g.h)提高到2.81 mg/(g.h).  相似文献   

17.
同时硝化/反硝化除磷工艺的脱氮除磷效能   总被引:1,自引:0,他引:1  
为实现同时硝化/反硝化除磷(SNDPR),在序批式活性污泥反应器(SBR)中,采用厌氧/好氧和厌氧/缺氧/好氧2种运行模式驯化污泥,并考察了厌氧/低氧模式下SNDPR过程中COD、PHB、TP、TN、DO和电化学参数的变化规律。结果表明,经2阶段驯化,反硝化聚磷菌比例提升至85.9%,硝化速率达5.97 mg(/L.h),实现了反硝化除磷菌和硝化菌的良好共存;在厌氧/低氧模式下,SNDPR对低碳城市污水具有良好脱氮除磷效果,TP、TN和COD去除率达到93.7%、79%和87.7%;PHB与COD降解、TN降解和TP吸收有良好的相关性,也是SNDPR过程的碳源驱动力;pH和ORP曲线上"谷点"预示厌氧释磷结束,pH曲线"折点"指示SNDPR结束。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号