首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了掌握通风作用下铀矿山采场爆破铀矿石堆氡析出规律,以留矿法采场为对象,自制模拟采场颗粒堆积型射气介质氡析出的试验装置,选用我国南方铀矿山粒径小于6 mm的破碎铀矿石为样品,试验研究矿石堆高为20 cm和40 cm条件下,采场排风氡浓度和矿堆氡析出份额与通风方式与通风风量的关系。结果表明:采场排风氡浓度随着通风风量的增加而降低,矿堆氡析出份额随通风风量的增大而增大;同种通风方式和通风风量下,采用下行风的采场排风氡浓度和氡析出份额小于上行风;通风风量和风流方向相同时,中央通风采场排风氡浓度和矿堆氡析出份额均低于端部通风;相同风量下,中央通风采场作业空间单位长度的氡浓度增量大于端部通风。  相似文献   

2.
30多年来,我国铀矿矿井通风降氡技术有了很大的进步和提高,改善了井下作业条件,保障了矿工的安全和健康,有力地推动了我国铀矿工业的发展。 1.通风方式和通风系统的变革铀矿建设初期,几乎全部采用压入式和集中供排风的整体通风系统。由于压入式通风的风门在使用和管理方面问题较多,导致车场或坑口漏风严重。60年代后期,新设计的矿井大多选用抽出式通风,但抽出式通风风质差,氡浓度难以控制,特别是压力分布控制不好时会导致大区域空气污染。针对上述问题,铀矿通风防护人员,经过多年实践探索,已能因地制宜地选用通风方式。目  相似文献   

3.
为研究铀矿山留矿法采场氡迁移规律,依据留矿法采场的构造和物理几何尺寸,建立了受限空间内颗粒堆积型射气介质气体流动的数学模型和氡迁移方程,以10 m和20 m高爆破矿堆为对象,采用计算流体力学(CFD)方法,研究了不同通风条件下采场中氡的迁移规律。结果表明:1)采场下行通风方式降低矿堆上部作业空间氡浓度的效果优于上行通风方式,但对采场运输巷道氡浓度的效果相反;采场排风氡浓度与采场通风风量成反比,氡析出份额与通风风量成正比;2)在相同通风风量下,10 m高爆破矿堆与20 m高爆破矿堆氡析出份额之差随通风风流量增长而逐渐缩小;3)均压通风对渗透率高(k=1×10-8m2)的采场排风氡浓度、矿堆氡析出份额有明显影响。  相似文献   

4.
1 问题的提出 云锡公司马拉格矿塘子凹坑1950中段至红旗坑2340中段的进风井,垂高390m,井筒直径3.2m,打通后,形成了对角式通风系统,改变了塘子凹坑通风不良的状况。以后,在1950中段进风井井底车场安装了1台75kW的风机作压入式进风,在2000中段回风井也安装一台75kW风机作抽出式回风,形成压抽混合式通风方式。各工作面和用风地点都安装了局部风机(共70多台),形成局部通风系统。 红旗坑2340中段的通风,主要通过安装在2340中段的一台55kW的主扇,新鲜风从2340坑口压入,再通过2台辅扇,16台局扇形成压入式通风。污风从1~#矿群回风道回风,也有从采空区回风的。  相似文献   

5.
铀矿井通风是以降低井下工作面空气中氡及其子体浓度为主要目的,亦称排氡通风。排氡通风是矿井通风的一个分支,矿井通风学的一般知识都适用于排氡通风。不过,仅仅依靠矿井通风的一般知识还不能搞好排氡通风。因为其中没有充分反映它的特点,也就是排氡通风所特有的规律。目前,对排氡通风特点的认识还不一致。这里粗浅地谈一谈个人的认识。按井下氡的析出量计算风量和分配风量,这是排氡通风的第一个特点。  相似文献   

6.
我矿565米中段的涌水从0963~#回风井引下至450米中段,再由水沟排出地表。565米中段的涌水量为0.16~0.35m~3/s。流量大,落差高,造成该回风天井的风流反向,烟尘下行,严重扰乱了通风系统。为了克服反向风压,我们构想了利用水流压头进行循环通风并和主扇有机结合的方案。一、涌水水流对通风系统的影响我矿通风方式为中央进风、两翼抽出式分区通风(如图1)。两台主扇工作方式均为抽出式。单翼最大需风量为35m~3/s,满足排尘风量19m~3/s的要求。  相似文献   

7.
在第一次“矿山辐射环境学术讨论会”(1981年、北京)上,曾对排氡通风的合理通风方式进行过一次比较广泛的讨论。许多发言是以矿山取得的防护效果(工作面氡浓度合格率、平均氡浓度等)来评价通风方式的。由于采用压入式、抽出式或压抽混合式通风的矿山都有取得良好通风防护效果的实例,因而难以肯定哪一种通风方式是排氡通风的合  相似文献   

8.
十三、怎样计算铀矿井通风所需风量? 铀矿山通风所需风量,主要按排除氡及其子体计算。按排氡计算,即根据矿井氡析出量和回风流中最高允许浓度计算。按排氡子体计算,即根据矿井中氡子体浓度、通风体积和完全换气时计算。这两种计算方法如下: 1.按排氡气计算所需风量根据稀释和排除矿井氡计算所需风量,设计中一般只考虑氡的主要来源(即从矿体  相似文献   

9.
我公司铜官山铜矿老山矿区为一对角式的通风系统,由小铜官山提升井进风,从老山风井回风。风路最长的约900米左右。按最低排尘风速(放矿巷道0.5米/秒,掘进和其他巷道0.25米/秒)计算,总风量(包括备  相似文献   

10.
众所周知,密闭废旧巷道和采空区是矿井防氡的重要内容之一。其作用一是减少矿井的氡析出量,二是减少漏风量。以前者为主的称为防氡密闭,以后者为主的称通风密闭。这两者对气密性要求是不同的。其原因是废旧巷道和采空区被密闭以后,氡浓度将因积累而增高,气密性不高,防氡效果将受到影响。以采空区为例。当有风流穿过采空区进入井下时,采空区出风的氡浓度为  相似文献   

11.
一、通风系统现状狮子山铜矿为竖井开拓,分为三个分区:东山、西山、老鸦岭.该矿采用多井口、多风机联合作业的多翼对角式抽出式通风,根据开拓系统的实际情况,通风系统分为东山,西山和老鸦岭等三个分区。通风系统安设了三台主扇,总装机容量670kW,实测主扇总功率为439.70kW,年耗电量约290多万kWh。这个通风系统存在以下问题: (1)东西回风井断面小,回风阻力大: (2)采空区较大,且部分地表已塌陷,  相似文献   

12.
辅扇在我矿的应用,主要用于小分区回风系统的排风和阻力大的分支回路的辅助通风。我矿二期扩建后,为解决东部2#群区域的污风排出问题,曾采用2台JBT-28kW风机并联抽出,但风量较小,仅13m~3/s,满足不了通风要求,且能量消耗较大。1986年起改用K系列风机。风量增加到16~28m~3/s,能耗降低30%,基本解决了该区域的通风问题。南部2#风井主扇由于受二氧化硫气体腐蚀和排风道碎砂磨损,机体严重损坏,叶片更换频繁。加上农民在上部闭坑中段采矿损坏通风构筑物,造成上部中段大量漏风,下部作业中段风量减少,通风困难。为了解决  相似文献   

13.
论述了风量、风压和风流方向这三个因素对通风空间氡析出的影响程度。提出了综合控制这三个因素,减少通风空间氡析出量的方法,使铀矿通风系统处于最佳工作状态。  相似文献   

14.
为有效指导铀矿井下独头巷道掘进面爆破后通风排氡与排炮烟的设计与管理,基于质量守恒定律和置换通风理论,建立独头巷道内抛掷空间和风流末端氡及炮烟浓度随通风时间变化的计算模型。分析岩石铀品位、通风风量、岩壁氡析出率和巷道长度对氡浓度的影响,以及通风风量对炮烟浓度的影响。利用所建模型,分别提出满足氡浓度和CO浓度限值条件下,独头巷道排氡与排炮烟的理论最短通风时间的计算方法。结果表明:在相同参数条件下,由最短通风时间计算方法得到的排炮烟与排氡时间有差异,建议巷道爆破后的最短通风时间取二者中较大值。  相似文献   

15.
一、现状篦子沟矿采用分段崩落采矿法,两翼式通风系统(图1)。专用入风井有一台直径2.4米的风机,作压入式通风。新鲜风流直接进入各分段水平的顶盘进风联络道,分送给各电耙道。污风经底盘岩石平巷汇集后,由回风井排出地表;目前已投产的4、10号矿体的污风则由804平洞口外的直径1.8米风机抽出至地表。篦子沟矿在通风系统方面,多年来作了巨大的努力,掘凿了专用进回风井巷,初步形成了适合于多中段开采分段崩落法的矿井通风系统,改善了劳动条件,促进了生产的发展。但由于种种原因,粉尘浓度合格率仍  相似文献   

16.
岩矿体表面的氡析出率是计算矿井氡析出量、设计排氡风量、评价矿井氡气危害的重要参数之一。测氡析出率的方法有多种,用不同测定方法测得的氡析出率具有不同的物理意义。一、氡析出率测定方法的分类尽管在测定氡析出率时所用的装置各有不同,收集岩体表面析出氡的方法也在不断  相似文献   

17.
铀矿开采过程中氡不断地从矿岩裂隙、含氡矿井水、以及采空区和废弃巷道中析出.氡是铀矿开采中的主要有害因素。因此,铀矿井的通风不仅要为井下工人提供新鲜空气,创造舒适的工作条件,而且也是排氡的重要措施。在开采过程中,采掘工作不断扩大,采空区和废弃巷道越来越多,通风降氡的效果  相似文献   

18.
大型地下洞库群施工期主要采用压入式通风或增设通风竖井来解决通风问题,但受施工通道尺寸限制无法增大风管供风,结果会导致通风恶化;竖井往往依靠经验或场地情况在洞库埋深较浅的位置设置,容易出现风网混乱、通风短路等问题。依托锦州地下石油储备工程,提出了适用于不同洞内外温差的竖井进风及排风方案,解决了施工中需要的通风量大、工作面多、污染量大等诸多问题。并基于CFD数值仿真,分析了洞库内CO及风速分布规律。结果表明,竖井进风及排风方案通风10 min后,洞库施工作业区域的CO质量浓度已基本降至安全质量浓度(30 mg/m~3)以下,能够满足安全快速施工的要求。由于竖井排风方案污风运移路径短,且在竖井自然排风及机械通风共同作用下,污风能够快速排出洞外,通风20 min后整个洞库的CO质量浓度基本降至安全质量浓度。若通风线路不超过2 km,则可采用在竖井底部/顶部布置轴流风机、引入新鲜风、洞内不布置射流风机或在风流转向处辅以射流风机的方式。合理有效地将新鲜风流引入主洞室是实施该竖井进风方案的关键所在,竖井底部的轴流风机布置位在距离竖井5 m的洞库中轴线上,其引流效率最高。温差越大,竖井自然通风效果相对越好,冬季利用竖井排风的通风效果要好于夏季利用竖井进风的通风方式。  相似文献   

19.
确定经济合理的排氡及其子体所需风量,是铀矿井和其他有放射性危害矿井通风的一个重要问题。矿井排氡及其子体的风量计算方法按排除的对象分为排氡和排氡子体两种。计算的依据是将井下空气中氡或氡子体浓度稀释到国家规定的最大容许浓度。矿井排除氡及其子体风量计算方法按整体或分点计算可分为下列两种:  相似文献   

20.
通常认为,通风是控制氡和氡子体的主要手段。但过大地增大风量,不仅会造成经济上的损失,而且通风效果不一定好,有时甚至适得其反。理论研究和通风实践证明,通风方式对氡的析出量和氡进入矿井空间的影响很大。在铀矿井下,氡除按其固有的规律衰变外,还继续以扩散和渗流的形式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号