首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Estimates of soil N2O and NOemissions at regional and country scales arehighly uncertain, because the most widely usedmethodologies are based on few data, they do notinclude all sources and do not account forspatial and seasonal variability. To improveunderstanding of the spatial distribution of soilNO and N2O emissions we have developedsimple multi-linear regression models based onpublished field studies from temperate climates.The models were applied to create spatialinventories at the 5 km2 scale of soil NOand N2O emissions for Great Britain. The N2O regression model described soilN2O emissions as a function of soil N input,soil water content, soil temperature and land useand provided an annual N2O emission of 128 kt N2O-N yr-1. Emission rates largerthan 12 kg N2O-N ha-1 yr-1 werecalculated for the high rainfall grassland areasin the west of Great Britain.Soil NO emissions were calculated using tworegression models, which described NO emissionsas a function of soil N input with and without afunction for the water filled pore space. Thetotal annual emissions from both methods, 66 and7 kt NO-N yr-1, respectively, span the rangeof previous estimates for Great Britain.  相似文献   

2.
Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N2O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (<1%), and high lignin content (>14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N2O production over the 28 day incubation from the control soil was 1.5 mg/N2O/m2, and 11 mg/N2O/m2 from the control + N. The N2O emission decreased with GWC addition (< 0.05) for the high N soil, reducing cumulative N2O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N2O production during the first week of the trial, when soil N2O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N2O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N2O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N2O, an important greenhouse gas.  相似文献   

3.
In order to assess nitrous oxide (N2O) emissions from typical intensively managed grassland in northern Britain fluxes were measured by eddy covariance using tuneable diode laser absorption spectroscopy from June 2002 to June 2003 for a total period of 4000 h. With micrometeorological techniques it is possible to obtain a very detailed picture of the fluxes of N2O at field scale (103–104 m2), which are valuable for extrapolation to regional scales. In this paper three of the four fertilizer applications were investigated in detail. N2O emissions did not always show a clear response. Hourly fluxes were very large immediately after the June 2002 nitrogen fertilizer application, peaking at 2.5 mg N2O–N m?2 s?1. Daily fluxes were averaging about 300 ng N2O m?2 s?1 over the 4 days following fertilizer application. The response of N2O emissions was less evident after the August fertilization, although 2 days after fertilizer application an hourly maximum flux of 554 ng N2O–N m?2 s?1 was registered. For the rest of August the flux was undetectable. The differences between fertilization events can be explained by different environmental conditions, such as soil temperature and rainfall. A fertiliser-induced N2O emission was not observed after fertilizer application in March 2003, due to lack of rainfall. The total N2O flux from June 2002 to June 2003 was 5.5 kg N2O–N ha?1y?1, which is 2.8% of the total annual N fertilizer input.  相似文献   

4.
In order to assess nitrous oxide (N2O) emissions from typical intensively managed grassland in northern Britain fluxes were measured by eddy covariance using tuneable diode laser absorption spectroscopy from June 2002 to June 2003 for a total period of 4000 h. With micrometeorological techniques it is possible to obtain a very detailed picture of the fluxes of N2O at field scale (103–104 m2), which are valuable for extrapolation to regional scales. In this paper three of the four fertilizer applications were investigated in detail. N2O emissions did not always show a clear response. Hourly fluxes were very large immediately after the June 2002 nitrogen fertilizer application, peaking at 2.5 mg N2O–N m–2 s–1. Daily fluxes were averaging about 300 ng N2O m–2 s–1 over the 4 days following fertilizer application. The response of N2O emissions was less evident after the August fertilization, although 2 days after fertilizer application an hourly maximum flux of 554 ng N2O–N m–2 s–1 was registered. For the rest of August the flux was undetectable. The differences between fertilization events can be explained by different environmental conditions, such as soil temperature and rainfall. A fertiliser-induced N2O emission was not observed after fertilizer application in March 2003, due to lack of rainfall. The total N2O flux from June 2002 to June 2003 was 5.5 kg N2O–N ha–1y–1, which is 2.8% of the total annual N fertilizer input.  相似文献   

5.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same field’s drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   

6.
The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions.This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment.The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.  相似文献   

7.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same fields drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   

8.
Co-composting of chicken manure, straw and dry grasses was investigated in a forced aeration system to estimate the effect of aeration rates on NH3, CH4 and N2O emissions and compost quality. Continuous measurements of gas emissions were carried out and detailed gas emission patterns were obtained using an intermittent-aeration of 30 min on/30 min off at rates of 0.01 (A1), 0.1 (A2) and 0.2 (A3) m3 min−1 m−3. Concentrations of CH4 and N2O at the low aeration rate (A1) were significantly greater than those at the other two rates, but there was no significant difference between the A2 and A3 treatments. CH4 and N2O emissions for this mixture could be controlled when the composting process was aerobic and ammonia emissions were reduced at a lower aeration rate. Comparison of CH4, N2O, NH3 emissions and compost quality showed that the aeration rate of the A2 treatment was superior to the other two aeration rates.  相似文献   

9.
Effects of leachate addition on ammonia volatilization and N2O and CO2 emissions from two different soils were investigated using the 10-day laboratory incubation method at two levels of moisture content. Ammonia volatilization was dominated by soil pH and only occurred in alkaline clay soil, where 0.26–0.32% of soil ammonia could be lost. The N2O emission from the alkaline clay soil was one order of magnitude greater than that from the acidic sandy soil, when either water or leachate was irrigated. Increasing the moisture content from 46% water-filled pore space (WFPS) to 70% WFPS in the alkaline clay soil or the acidic sandy soil by either water or leachate irrigation increased the N2O emission by over twofold. The CO2 emission from each soil sample at the two WFPSs was almost the same. The CO2 emission from the alkaline clay soil with leachate addition was 72% lower than that from the acidic sandy soil with leachate addition, and 6.7 times higher than that from the alkaline clay soil with distilled water addition. Ammonia volatilization and N2O emission under leachate irrigation could be minimized by avoiding the excessively wet condition and by selecting the acidic sandy soil with low organic carbon and total nitrogen content.  相似文献   

10.
Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20–200 g CO2 eq. m?2 h?1 magnitude (up to 428 mg N m?2 h?1) were observed within 20 m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO2 eq. m?2 h?1. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.  相似文献   

11.
Emissions trading in the European Union (EU), covering the least uncertain emission sources of greenhouse gas emission inventories (CO2 from combustion and selected industrial processes in large installations), began in 2005. During the first commitment period of the Kyoto Protocol (2008–2012), the emissions trading between Parties to the Protocol will cover all greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) and sectors (energy, industry, agriculture, waste, and selected land-use activities) included in the Protocol. In this paper, we estimate the uncertainties in different emissions trading schemes based on uncertainties in corresponding inventories. According to the results, uncertainty in emissions from the EU15 and the EU25 included in the first phase of the EU emissions trading scheme (2005–2007) is ±3% (at 95% confidence interval relative to the mean value). If the trading were extended to CH4 and N2O, in addition to CO2, but no new emissions sectors were included, the tradable amount of emissions would increase by only 2% and the uncertainty in the emissions would range from −4 to +8%. Finally, uncertainty in emissions included in emissions trading under the Kyoto Protocol was estimated to vary from −6 to +21%. Inclusion of removals from forest-related activities under the Kyoto Protocol did not notably affect uncertainty, as the volume of these removals is estimated to be small.  相似文献   

12.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

13.
Despite many studies of the N2O emission, there is a lack of knowledge on the role of subsoil for N2O emission, particularly in sandy soils. To obtain insight into the entrapment, diffusion, convection and ebullition of N2O in the soil, the N2O concentration in the soil atmosphere was measured over a period of 1 year in 4 lysimeters (agricultural soil monoliths of 1 m2 × 2 m) at 30, 50, 80, 155, and 190 cm depth with altogether 86 gas probes. Additionally the N2O emission into the atmosphere was measured in 20 closed chambers at the soil surface. Concurrently the soil temperature and soil water content were recorded in order to quantify their effects on the fate of N2O in the soil. Results of the continuous measurements between January and December 2006 were: N2O concentrations were highest in the deeper soil; maximum concentration was found at a depth of 80 cm, where the water content was high and the gas transport reduced. The highest N2O concentration was recorded after ‘special events’ like snowmelt, heavy rain, fertilization, and grubbing. The combination of fertilization and heavy rain led to an increase of up to 2,700 ppb in the subsoil.  相似文献   

14.
Nitrous oxide emission from some English and Welsh rivers and estuaries   总被引:1,自引:0,他引:1  
Nutrient and N2O concentrations in the water columns were measured seasonally over a full salinity range in the nutrified rivers Colne, Stour, Orwell, Deben, Trent, Ouse and Humber and their estuaries on the east coast of England between August 2001 and May 2002, and in the oligotrophic rivers Conwy, Dovey and Mawddach in North and West Wales between August 2002 and May 2003. Nutrient and N2O concentrations in the nutrified English rivers and estuaries were much higher than those in the Welsh rivers. N2O concentrations and % saturation in the estuaries were significantly correlated with nitrate, nitrite and ammonium concentrations in the water. The strongest correlation was with nitrite (r 2 = 0.56, p < 0.01), suggesting that nitrite was the most significant factor among the different nutrients in regulating N2O concentration in the estuaries. N2O concentrations in the English rivers and estuaries were supersaturated throughout the year with annual averages from 186.9 to 992.9%, indicating that these rivers and estuaries were sources of atmospheric N2O, whereas in the Welsh rivers N2O concentrations were much lower with annual averages from 113.6 to 137.4% saturation. Although the estuarine area in the Colne was almost the same as that in the Conwy, the annual N2O emission from the Colne was much higher (937498 mol N yr?1) than in the Conwy (23020 mol N yr?1). On the east coast, riverine emissions of N2O were only 0.5–12.5% of the total emission from rivers and estuaries. Thus rivers were negligible, but estuaries were significant contributors to the UK N2O inventory.  相似文献   

15.
Nitrous oxide emission from some English and Welsh rivers and estuaries   总被引:4,自引:0,他引:4  
Nutrient and N2O concentrations in the water columns were measured seasonally over a full salinity range in the nutrified rivers Colne, Stour, Orwell, Deben, Trent, Ouse and Humber and their estuaries on the east coast of England between August 2001 and May 2002, and in the oligotrophic rivers Conwy, Dovey and Mawddach in North and West Wales between August 2002 and May 2003. Nutrient and N2O concentrations in the nutrified English rivers and estuaries were much higher than those in the Welsh rivers. N2O concentrations and % saturation in the estuaries were significantly correlated with nitrate, nitrite and ammonium concentrations in the water. The strongest correlation was with nitrite (r2 = 0.56, p < 0.01), suggesting that nitrite was the most significant factor among the different nutrients in regulating N2O concentration in the estuaries. N2O concentrations in the English rivers and estuaries were supersaturated throughout the year with annual averages from 186.9 to 992.9%, indicating that these rivers and estuaries were sources of atmospheric N2O, whereas in the Welsh rivers N2O concentrations were much lower with annual averages from 113.6 to 137.4% saturation. Although the estuarine area in the Colne was almost the same as that in the Conwy, the annual N2O emission from the Colne was much higher (937498 mol N yr–1) than in the Conwy (23020 mol N yr–1). On the east coast, riverine emissions of N2O were only 0.5–12.5% of the total emission from rivers and estuaries. Thus rivers were negligible, but estuaries were significant contributors to the UK N2O inventory.  相似文献   

16.
With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m?2 h?1) extremely higher than those of N2O (0.028–0.41 mg N m?2 h?1). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O–N capita?1 yr?1. An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO2 eq yr?1, respectively, for a total that could be transformed to 9.09 kg CO2 eq capita?1 yr?1.  相似文献   

17.
Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg?1 DM to 274.2, 30.4, and 314.0 mg kg?1 DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg?1 DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.  相似文献   

18.
Dissolved nitrous oxide (N2O), nitrate (NO3 -), and ammonium (NH4 +) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3 - and NH4 + in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg Nentering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.  相似文献   

19.
The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week?1 and the temperature inside the composting units was in all cases only a few degrees (2–10 °C) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg?1 input wet waste (ww) and 0.30–0.55 kg N2O Mg?1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100–239 kg CO2-eq. Mg?1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg?1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg?1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.  相似文献   

20.
Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 μmol N2O m?2 day?1 and 2518 μmol N2 m?2 day?1, respectively, from the Couesnon and 109 μmol N2O m?2 day?1 and 303 μmol N2 m?2 day?1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号