首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
酸化液对厌氧释磷好氧吸磷速率的影响研究   总被引:3,自引:1,他引:2  
采用序批式试验研究了酸化液对聚磷菌厌氧释磷好氧吸磷速率的影响。同一活性污泥混合液中聚磷菌的释磷潜力相当,混合液中挥发性脂肪酸越多则越有利于激发聚磷菌的释磷潜能。酸化液投加量越大,对应的混合液中聚磷菌的平均释磷速率也越大。当酸化液投加量为30 mg/L(以TOC计)时,聚磷菌的平均释磷速率达0.137 mg/(mg.d),是未投加酸化液工况的3.26倍。聚磷菌厌氧释磷过程中,活性污泥的MLVSS值逐渐增大,而MLSS值却不断减小,这是由聚磷菌释磷反应过程中聚磷颗粒和糖原的消耗,以及PHB的生成而产生的。碳源充足与否,对聚磷菌的平均好氧吸磷速率影响不大,研究各工况中,聚磷菌的平均吸磷速率在0.129~0.160 mg/(mg.d)内。碳源越充足,则聚磷菌在好氧吸磷反应持续的时间越长,因此,具有更强的超量吸磷能力。酸化液投加量为20 mg/L时(以TOC计),聚磷菌在好氧吸磷结束时,出水的SP浓度能减少到0.5 mg/L以下。  相似文献   

2.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

3.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   

4.
倒置AAO工艺聚磷微生物的吸磷行为   总被引:7,自引:1,他引:6       下载免费PDF全文
采用人工配水和市政污水研究了“缺氧-厌氧-好氧”(倒置AAO)脱氮除磷工艺中,聚磷微生物(PAOs)在低碳源、高硝酸盐环境下的释磷和吸磷行为.结果表明,在低碳源、高氮和磷环境中,尽管PAOs在缺氧厌氧段释磷程度低,如果适当延长厌氧段和好氧段的HRT、且好氧曝气较充分,仍能超量吸收磷.PAOs过量吸磷的能量来源不仅仅是厌氧段吸收与合成的胞内聚合物在好氧段的氧化,还来自好氧环境正常代谢过程中多余的能量.外加碳源的投加时间点对PAOs吸磷的影响不显著.PAOs在厌氧段后期出现过量吸磷现象,推测是细胞内有机物厌氧降解产生的ATP通过某种代谢途径被用于无机磷的吸收.  相似文献   

5.
利用硼氢化钠还原硝酸银,并使用聚乙烯醇(PVA)作为分散剂,制备出分散良好、粒径为(14±3)nm的纳米银颗粒,考察了其对聚磷菌(Microlunatus phosphovorus)好氧吸磷和厌氧释磷的影响,以及产生的毒性效应.结果表明,在好氧状态下,7mg/L的纳米银能够完全抑制聚磷菌的生长(P <0.01),达到10mg/L时才能完全抑制聚磷菌的吸磷能力(P=0.01);在厌氧状态下,大于20mg/L的纳米银才使聚磷菌释磷能力受到部分抑制(P <0.05).活性氧簇(ROS)和扫描电子显微镜(SEM)的检测结果表明,纳米银使细菌体内ROS水平降低,部分细菌菌体表面塌陷,这说明,纳米银不但可以毒害聚磷菌菌体表面,还可以降低菌内ROS水平.  相似文献   

6.
采用两组A/A/O方式运行的SBR反应器,溶解氧分别控制在2~4mg/L(对照组)和6~8mg/L(过量曝气组),通过试验对比研究了过量曝气对聚磷菌厌氧释磷、缺氧吸磷、好氧吸磷性能的影响。结果表明:过量曝气初期,出水磷浓度低于对照组,一周后出水磷浓度开始上升,除磷率下降了18%;过量曝气时,厌氧释磷量是对照组的1.45倍,释磷速率不变,缺氧吸磷量增加,但反硝化聚磷菌的比例减少,好氧吸磷量和吸磷速率均降低,分别为对照组的75%和68%,而内源损耗引起的无效释磷和好氧吸磷能力降低是除磷效果变差的主要原因;过量曝气使污泥的SVI值升高,平均粒径减小,出水SS略优于对照组,污泥的含磷量降低,总磷去除效果变差,长期过量曝气,将会导致生物除磷过程的恶化。  相似文献   

7.
A2/O污水处理工艺中基质转化机理研究   总被引:3,自引:1,他引:2  
以实际污水培养驯化污泥的小试规模A2/O工艺为研究对象,对系统中基质的转化机理及硝态氮对基质转化的影响进行了批式试验研究.结果表明,在无硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD有51%可被聚磷菌吸收并合成为聚羟基链烷酸(PHAs);缺氧和好氧条件下的比吸磷速率为3.87和6.54 mg/(g·h),利用单位PHAs的吸磷量(rP/PHA)分别为0.38和0.78而在有硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD仅有30.8%可被聚磷菌吸收并合成PHAs,61.5%用于还原硝态氮;缺氧和好氧条件下的比吸磷速率为2.24和4.58 mg/(g·h),rP/PHA值分别为0.35和0.77.同时,在这2个系统中厌氧阶段释放的磷和消耗的COD成良好的线性关系.硝态氮存在于厌氧环境会降低聚磷菌的厌氧释磷速率和效率,使PHAs的合成量减少,从而降低聚磷菌的缺氧和好氧吸磷速率,但并不会影响其吸磷能力.  相似文献   

8.
好氧段碳源浓度对同步去除和富集磷酸盐生物膜的影响   总被引:1,自引:1,他引:1  
徐林建  潘杨  章豪  冯鑫  魏攀龙  尤星怡 《环境科学》2019,40(7):3179-3185
利用聚磷菌以循环交替O/A模式运行,对生活污水处理厂的主流工艺中实现磷酸盐的同步去除和富集,探究了好氧段碳源浓度对聚磷生物膜去除和富集磷酸盐性能以及生物膜中微生物种群结构的影响.结果表明,好氧COD质量浓度从200 mg·L~(-1)降低到0 mg·L~(-1),吸磷速率提升1. 29倍,出水磷质量浓度稳定在0. 5 mg·L~(-1)以下;释磷速率提升3. 56倍,富集液磷酸盐质量浓度从27. 125 mg·L~(-1)升高到55. 91 mg·L~(-1).微生物群落变化中,鉴定为聚磷菌的变形菌门(Proteobacteria)的含量增加约2倍,红环菌科(Rhodocyclaceae)和厌氧绳菌科(Anaerolineaceae)的富集效果分别提高了2. 28和5倍.降低好氧段碳源浓度,有利于聚磷菌的筛选和富集,强化了好氧段磷酸盐的去除以及厌氧段磷酸盐的释放,获得了更高的磷酸盐富集液,并且为以资源回收为目的的未来城市污水处理厂提供降低好氧段碳源需求的理论基础.  相似文献   

9.
富含聚磷菌的好氧颗粒污泥的培养与特性   总被引:7,自引:4,他引:3  
由阳  彭轶  袁志国  李夕耀  彭永臻 《环境科学》2008,29(8):2242-2248
以实验室SBR反应器为载体.接种普通活性污泥,探讨了富集聚磷菌和培养好氧颗粒污泥同时实现的可行性,以交替负荷的方法培养2个月后,富含聚磷菌的好氧颗粒污泥形成.颗粒形成后逐步改变碳源种类以提供选择压.淘汰系统中存在的聚糖菌.结果表明,与丙酸相比,乙酸更适合富含聚磷菌的好氧颗粒污泥的生存,以乙酸为碳源,系统吸放磷量更多.颗粒平均粒径更大(2 mm),颗粒的性能指标(沉降速度、含水率、呼吸速率、密度、完整度系数)部相对优于以丙酸为碳源时的情况.以工艺检测和分子生物学手段双重检测颗粒形成过程,发现颗粒吸放磷能力的逐渐提高伴随着聚磷菌占微生物总量的比例越来越大.富集培养结束时聚磷菌占总菌的70%左右.实验证明,富含聚磷菌的好氧颗粒污泥具有优异的污染物去除能力,其对COD去除率可达95%以上,对磷的去除可达100%.  相似文献   

10.
利用两级钢渣基复合滤料生物滤池(SSMBF)构建厌氧/好氧(A/O)交替运行工艺系统.在单池HRT=2h,A/O交替周期48h,厌氧DO=0.2~0.5mg/L,好氧DO=3~5mg/L,T=23~27℃的运行条件下,考察了SSMBF系统对模拟生活污水(pH=6.8~7.5,COD=260~330mg/L,NH4+-N=35~40mg/L,PO43--P=9~11mg/L)的处理效果,分析了其氨氮和磷去除特性.结果表明,两级A/O交替SSMBF系统具有良好的生活污水处理能力,对氨氮、磷和COD的去除率分别为95%、40%~60%和83.3%,出水氨氮、磷和COD浓度分别为0.5mg/L?3~6mg/L和50mg/L.在厌氧/好氧交替周期为48h的工况下,SSMBF系统的氨氧化菌和聚磷菌分别可在10h和8h恢复最佳活性.SEM?EDS表征和污染物去除特性分析结果显示,A/O交替运行SSMBF系统充分发挥了钢渣基复合滤料的离子和碱度释放特性,通过聚磷菌的厌氧释磷效应,在厌氧SSMBF中诱导促进了生物-结晶协同除磷,结晶产物为以羟基磷灰石为主的磷酸盐化合物.  相似文献   

11.
一株嗜盐聚磷菌的筛选及除磷性能初探   总被引:3,自引:2,他引:1  
张培玉  孙梦  张晨 《环境科学学报》2011,31(11):2368-2373
从运行稳定的以生活污水为碳源的污泥中富集分离,并筛选出一株嗜盐聚磷菌qdp05,通过对菌株的形态、生理生化特征及16SrDNA序列进行分析后,鉴定该菌株qdp05为肠杆菌属.当碳源为乙酸钠,盐度为2%的条件下,好氧条件下培养48h后,qdp05对磷的最终去除率为87.8%.在厌氧好氧连续培养过程,qdp05表现出明显的...  相似文献   

12.
A2/O污水处理工艺中基质转化机理研究   总被引:3,自引:2,他引:1  
徐伟锋  陈银广  顾国维  张芳 《环境科学》2006,27(11):2228-2232
以实际污水培养驯化污泥的小试规模A2/O工艺为研究对象,对系统中基质的转化机理及硝态氮对基质转化的影响进行了批式试验研究.结果表明,在无硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD有51%可被聚磷菌吸收并合成为聚羟基链烷酸(PHAs);缺氧和好氧条件下的比吸磷速率为3.87和6.54 mg/(g·h),利用单位PHAs的吸磷量(rP/PHA)分别为0.38和0.78.而在有硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD仅有30.8%可被聚磷菌吸收并合成PHAs,61.5%用于还原硝态氮;缺氧和好氧条件下的比吸磷速率为2.24和4.58 mg/(g·h),rP/PHA值分别为0.35和0.77.同时,在这2个系统中厌氧阶段释放的磷和消耗的COD成良好的线性关系.硝态氮存在于厌氧环境会降低聚磷菌的厌氧释磷速率和效率,使PHAs的合成量减少,从而降低聚磷菌的缺氧和好氧吸磷速率,但并不会影响其吸磷能力.  相似文献   

13.
厌氧/好氧交替快速筛选聚磷菌及其生理特性的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过厌氧/好氧交替的平板筛选方法,快速的筛选出除磷率高于60%的高效聚磷菌15株,并对其进行16S rDNA和生理生化测定,除2株为芽孢杆菌外,其余均为γ变形菌纲,主要以Klebsiella sp.和Pseudomonas sp.为主.菌种除磷实验表明,聚磷菌除磷能力越高,发酵终点pH值越高.聚磷菌反投加实验表明,与活性污泥52%的除磷率相比,投加后除磷率可达到73.3%,可以有效提高活性污泥的除磷能力.  相似文献   

14.
好氧颗粒污泥处理制糖工业废水厌氧出水的除磷特性研究   总被引:1,自引:1,他引:1  
制糖工业废水经厌氧生物处理后,COD大幅下降,但是出水中N、P含量仍然较高,严重破坏水体生态平衡.利用好氧颗粒污泥对制糖工业废水的厌氧出水进行脱氮除磷处理,讨论了其除磷过程.经复合底物(乙酸盐、丙酸盐、丁酸盐)培养的好氧颗粒污泥直径1.7 mm,SVI为38.43 mL.g-1,TP去除率达90.9%,出水磷含量仅为1.3 mg.L-1,单位COD释磷率为0.571,厌氧条件下磷的释放速率达到5.73 mg.(g.h)-1,好氧颗粒污泥表现出较好的沉淀性能和较高的除磷活性.由于底物中丙酸盐、丁酸盐含量增加,使得聚磷菌在反硝化过程中NO3--N的利用率增加,即消耗单位质量的NO3--N可以吸收更多的磷.好氧颗粒污泥及其胞外聚合物中P元素的含量与其中Mg、Ca、Fe元素的含量表现出很高的相关性,胞外聚合物对P的吸附使得体系除磷能力进一步增强.通过对污泥反硝化除磷的研究发现,反硝化聚磷菌占总聚磷菌的61.9%,其吸磷量与消耗硝酸盐的比值[m(P)/m(NO3--N)]为1.14.  相似文献   

15.
反硝化耐冷菌Acinetobacter johnonii DBP-3的低温除磷特性   总被引:2,自引:1,他引:1  
通过批实验技术研究了不同条件下一株反硝化耐冷菌Acinetobacter johnonii DBP-3(Genbank登录号JN314436,保藏号CGMCC4753)的低温除磷特性.结果表明,菌株可分别利用氧气(O2)、硝酸根(NO3-)和亚硝酸根(NO2-)为电子受体吸收溶液中的磷酸盐,不同电子受体条件下吸磷效能的大小顺序为:氧气>硝酸根>亚硝酸根.NO3-的浓度为0~150mg·L-1时,菌株对磷酸盐的吸收能力随着NO3-浓度的增加而增加.亚硝酸盐浓度为0~20mg·L-1时菌株对磷酸盐的吸收能力随NO2-浓度的增加而明显增加;浓度为20~60mg·L-1时,菌株对磷酸盐的吸收能力受NO2-浓度的影响较小;浓度达80mg·L-1时,菌株的除磷能力明显下降.不同碳源条件下厌氧培养的菌体细胞在缺氧条件下培养时对磷酸盐的去除能力大小顺序为:乙酸钠>柠檬酸钠>葡萄糖.菌株除磷的适宜pH值范围为7~9.温度为5℃时,菌株仍保持一定的除磷能力,随着温度的升高除磷能力逐渐增加,当温度达35℃时,除磷能力开始下降.菌株对盐度的耐受性在好氧培养时大于缺氧培养.缺氧培养48h,菌体细胞中磷的平均含量可达5.7%,而厌氧培养的菌体细胞中磷的最低含量为2.6%,表现出了明显的聚磷和释磷特性.研究结果可为低温富营养化水体或富氮磷污水的生物处理提供理论依据.  相似文献   

16.
单一好氧环境下的强化生物除磷研究   总被引:1,自引:0,他引:1  
李菲菲  袁林江  陆林雨 《环境科学》2010,31(9):2113-2117
将乙酸钠为单一碳源、厌氧/好氧交替、具有较好除磷效果的传统生物除磷SBR系统,改为单一的好氧SBR运行方式,发现改变后的SBR系统仍可取得较好的除磷效果,除磷率最高达73.9%,最低约40%,平均维持在50%左右.这种现象可以维持长达80个周期.污泥含磷率由最初的1.43%增加到6.56%.对污泥微生物胞内PHB和糖原进行测定,结果表明此系统中微生物PHB和糖原在VSS中含量分别约为27 mg/g和26 mg/g,二者含量在好氧过程中都基本保持不变.通过对反应过程中碳源消耗与磷吸收关系的分析,认为该单一好氧条件下的生物除磷机制是由于长期以乙酸钠为唯一碳源下,试验系统中活性污泥被驯化,在胞内聚磷颗粒含量容纳能力范围内还可以在好氧环境下以乙酸钠氧化产生的ATP为能量进行磷吸收所致.  相似文献   

17.
不同厌氧时间对富集聚磷菌的SNDPR系统处理性能的影响   总被引:5,自引:0,他引:5  
在延时厌氧(3h)/低氧(2.5h,溶解氧0.5~1.0mg/L)条件下运行的富集聚磷菌的同步硝化反硝化(SNDPR)系统中,以城市生活污水为处理对象,研究了不同厌氧时间(3.5,3,2,1.5h)对系统内碳源贮存以及脱氮除磷效果的影响.试验结果表明:厌氧时间为3.5h,反应器脱氮效果最好.厌氧时间为3h时,反应器除磷效果最好,出水PO43-浓度为0.35mg/L.厌氧时间从1.5h逐渐上升到3.5h时,厌氧末贮存的聚羟基脂肪酸-PHAs的量也随之增加;当厌氧时间从3h升至3.5h时,释P量反而下降,出水P浓度反而升高.这说明增加厌氧时间有利于强化内碳源贮存,但过长的厌氧时间反而不利聚磷菌种群的富集.运行51个周期之后在厌氧时间为1.5h和2h的反应器内出现非丝状菌膨胀;反应周期内pH值的变化曲线可以作为反应各个过程的指示参数.  相似文献   

18.
A bench-scale cyclic activated sludge technology (CAST) was operated to study the biological phosphorus removal performance and a series of batch tests was carried out to demonstrate the accumulation of denitrifying polyphosphate-accumulating organisms (DNPAOs) in CAST system. Under all operating conditions, step-feed CAST with enough carbon sources in influent had the highest nitrogen and phosphorus removal efficiency as well as good sludge settling performance. The average removal rate of COD, NH4+-N, PO43− -P and total nitrogen (TN) was 88.2%, 98.7%, 97.5% and 92.1%, respectively. The average sludge volume index (SVI) was 133 mL/g. The optimum anaerobic/aerobic/anoxic (AOA) conditions for the cultivation of DNPAOs could be achieved by alternating anoxic/oxic operational strategy, thus a significant denitrifying phosphorus removal occurred in step-feed CAST. The denitrification of NOx− -N completed quickly due to step-feed operation and enough carbon sources, which could enhance phosphorus release and further phosphorus uptake capability of the system. Batch tests also proved that polyphosphate-accumulating organisms (PAOs) in the step-feed process had strong denitrifying phosphorus removal capacity. Both nitrate and nitrite could be used as electron acceptors in denitrifying phosphorus removal. Low COD supply with step-feed operation strategy would favor DNPAOs accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号