首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987–1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been added bi-monthly since 1989 to the West Bear catchment at 1800 eq ha-1 a-1; the East Bear reference catchment is responding to ambient conditions. Initially, the two catchments had nearly identical chemistry (e.g., Ca2+, Mg2+, SO4 2-, and alkalinity ≈82, 32, 100, and 5 μeq L-1, respectively). The manipulated catchment responded initially with increased export of base cations, lower pH and alkalinity, and increased dissolved Al,NO3 - and SO4 2-. Dissolved organic carbon and Si have remained relatively constant. After 7 yr of treatment, the chemical response of runoff switched to declining base cations, with the other analytes continuing their trends; the exports of dissolved and particulate Al, Fe, and P increased substantially as base cations declined. The reference catchment has slowly acidified under ambient conditions, caused by the base cation supply decreasing faster than the decrease of SO4 2, as pollution abates. Export of Al, Fe and, P is mimicking that of the manipulated watershed, but is lower in magnitude and lags in time. Probable increasing SO4 2- adsorption caused by acidification has moderated the longer-term trends of acidification of both watersheds. The trends of decreasing base cations were interrupted by the effects of several short-term events, including severe ice storm damage to the canopy, unusual snow pack conditions, snow melt and rain storms, and episodic input of marine aerosols. These episodic events alter alkalinity by5 to 15 μeq L-1 and make it more difficult to determine recovery from pollution abatement.  相似文献   

2.
Ecosystem dynamics in high-elevation watersheds are extremely sensitive to changes in chemical, energy, and water fluxes. Here we report information on yields of dissolved organic C, N, and P for the 1999 snowmelt runoff season from three high-elevation catchments in the Colorado Front Range, U.S.A.: Green Lake 4 (GL4) and Albion townsite (ALB) on North Boulder Creek and the Saddle Stream (SS), a tributary catchment dominated by alpine tundra. Dissolved organic carbon (DOC) concentrations in stream waters ranged from <1 to 10 mg C L-1, with the highest values occurring at the SS site. Dissolved organic nitrogen (DON) concentrations ranged from below detection limits to 0.28 mg N L-1 and were again highest at the tundra-dominatedsite. Dissolved organic phosphorus (DOP) concentrations were at or near detection limits throughout the season in all three catchments indicating a strong terrestrial retention of P. OnlyDOC showed a significant relationship to discharge. Yields of DOC in the three catchments ranged from 10.6 to 11.8 kg C ha-1 while yields of DON and DOP ranged from 0.32 to 0.41 and 0.02 to 0.08 kg ha-1, respectively. The relatively highyield of organic N and P relative to C from the highest elevationsite (GL4) was somewhat surprising and points to either: (1) a source of dissolved organic material (DOM) in the upper reaches of the catchment that is enriched in these nutrients or (2) theselective uptake and processing of organic N and P downstream ofthe sampling site. Additionally, seasonal changes in the relativeimportance of DOM precursor materials appear to result in changesin the N content of DOM at both the GL4 and ALB sites.  相似文献   

3.
Changes in concentrations of soluble reactive phosphorus (SRP), excess partial pressure of carbon dioxide (EpCO2), and chlorophyll-a were examined for two rivers in the in the upper Thames catchment: the main river Thames at Wallingford and a chalk stream tributary, the River Kennet. Sampling began in the spring of 1997 and has covered extremes in river flow conditions. During the sampling period there was a dramatic reduction in phosphorus (P) inputs from the introduction of effluent P-treatment at sewage treatment works, as a result of the EU Urban Wastewater Treatment Directive. Despite major reductions in baseflow SRP concentrations in the River Kennet, from around 700 μg-P L-1 to around 100 μg-P L-1, observations of aquatic plant communities indicate overall degradation in ecological quality since effluent P-treatment was introduced. The degradation was associated with a spring and summer decline in growth of Ranunculus, a macrophyte of high conservation value in chalk streams, particularly from 2000 onwards, linked to shading by epiphytic algae. Although the EpCO2 records indicate a reduction in primary productivity since effluent P-treatment, the River Kennet may have become more sensitive to epiphyte blooms. Episodes of epiphyte proliferation appear to be linked temporally to small increases in SRP concentrations (typicallyabove a 100 μg-P L-1 threshold) under summer baseflow conditions. The in-stream system is highly complex and individual processes and causality are difficult to resolve, particularly given changes in river flows linked to background climatic variability and limited availability of biological data. This study demonstrates the need for integrated long-term biological and chemical monitoring of river systems subject to major perturbations to assess timescales required to produce new dynamic equilibria in ecosystem response.  相似文献   

4.
Atmospherically deposited lead in the upper layer of the heavily eroded peatlands of the Peak District, southern Pennines, UK, reaches concentrations in excess of 1,000 mg kg−1. Erosion of the upper peat layer in this region is releasing lead, associated with eroded peat particles, into the fluvial system. Understanding the process mechanisms that control dissolved lead concentrations in contaminated peatland streams is vital for understanding lead cycling and transport in peatland streams. Many headwater streams of the southern Pennines recharge drinking water reservoirs. Measurements in the Upper North Grain (UNG) study catchment show that mean sediment-associated and dissolved lead concentrations are 102 ± 39.4 mg kg−1 and 5.73 ± 2.16 μg l−1, respectively. Experimental evidence demonstrates that lead can desorb from suspended sediments, composed of contaminated peat, into stream waters. In-stream processing could therefore account for the elevated dissolved lead concentrations in the fluvial system of UNG.  相似文献   

5.
Extremely high emissions of S and N compounds in Central Europe (both 280 mmol m-2 yr-1) declined by 70and 35%, respectively, during the last decade. Decreaseddeposition rates of SO4 -2, NO3 -, and NH4 + in the region paralleled emission declines. The reduction in atmospheric inputs of S and N to mountain ecosystemshas resulted in a pronounced reversal of acidification in the Tatra Mountains and Bohemian Forest lakes. Between the 1987–1990and 1997–1999 periods, concentrations of SO4 -2 and NO3 - decreased (average ± standard deviation) by 22±7 and 12±7 mol L-1, respectively, in theTatra Mountains, and by 19±7 and 15±10 mol L-1, respectively, in the Bohemian Forest. Their decrease was compensated in part (1) by a decrease in Ca2+ + Mg2+ (17±7 mol L-1) and H+ (4±6 mol L-1), and an increase in HCO3 -(10±10 mol L-1) in the Tatra Mountains lakes, and (2) by a decrease in Al (7±4 mol L-1), Ca2+ + Mg2+ (9±6 mol L-1), and H+ (6±5 mol L-1), in Bohemian Forest lakes. Despite the rapid decline in lake water concentrations of SO4 -2 and NO3 - in response to reduced S and N emissions, their present concentrations in some lakes are higher than predictionsbased on observed concentrations at comparable emission rates during development of acidification. This hysteresis in chemical reversal from acidification has delayed biological recovery of the lakes. The only unequivocal sign of biological recovery hasbeen observed in erné Lake (Bohemian Forest) where a cladoceran species Ceriodaphnia quadrangular has recentlyreached its pre-acidification abundance.  相似文献   

6.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

7.
Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1 was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.  相似文献   

8.
Amounts of readily soluble nutrients on asphalt parking lot surfaceswere measured at four locations in metropolitan Phoenix, Arizona, U.S.A. Using a rainfall simulator, short intense rainfall events were generated to simulate `first flush' runoff. Samples were collected from 0.3 m2 sections of asphalt at 8 to 10 sites on each of four parkinglots, during the pre-monsoon season in June-July 1998 and analyzed for dissolved NO3 --N, NH4 +-N, soluble reactive phosphate (SRP), and dissolved organic carbon (DOC). Runoff concentrations varied considerably for NO3 --N and NH4 +-N (between 0.1 and 115.8 mg L-1) and DOC (26.1 to 295.7 mg L-1), but less so for SRP (0.1 to 1.0 mg L-1), representing average surface loadings of 191.3, 532.2, and 1.8 mg m-2 respectively. Compared with similar data collected from undeveloped desert soil surfaces outside the city, loadings of NO3 --N and NH4 +-N on asphalt surfaces were greater by factors of 91 and 13, respectively. In contrast, SRP loads showed little difference between asphalt and desert surfaces. Nutrient fluxes in runoff from a storm that occurred shortly after the experiments were used to estimate input-output budgets for 3 of the lots under study. Measured outputs of DOC and SRP were similar to those predicted using rainfall and experimentally determined surface loadings, but for NH4 +-N and particularly for NO3 --N, estimated rainfall inputs and surface runoff were significantly higher than exports in runoff. This suggests that parking lots may be important sites for nutrient accumulation and temporary storage in arid urban catchments.  相似文献   

9.
Resuspension of contaminated aquatic sediments by natural and anthropogenic activities (i.e., dredging, boat activities, fish, wildlife, storms, runoff) increases the flux of natural colloidal material and colloidally bound contaminants into the overlying water column. Colloidal material extracted from lower Fox River sediments was analyzed for various physical and chemical characteristics and subjected to batch aggregation studies under controlled conditions of pH (~3–8) and colloid concentrations (5 and 9 mg L?1 as TOC equivalents) in the presence of dissolved phenanthrene in solution. Under water chemistry conditions where pH and K+ concentration are typical of most natural waters (10?2 M K+ and pH~8), the presence of phenanthrene in solution (average [phen] = 0.2–0.4 mg/L) prevents particle aggregation and decreases the settling rate of these particles. Ultimately, this increases the total concentration of colloidally bound contaminants in the water column. Dredging is the most popular remediation technique for removing contaminated sediments from the aquatic environment. However, this laboratory study suggests that for typical waters, dredging may potentially elevate the concentrations of contaminants found in the water column. © 2001 John Wiley & Sons, Inc.  相似文献   

10.
The major processes responsible for phosphorus (P) removal in constructed wetlands with horizontal sub-surface flow (HSF CWs) are adsorption, precipitation and plant uptake if the biomass is harvested. The filtration materials frequently used in HSF CWs, i.e., gravel or crushed rock, provide only limited adsorption and plants are not regularly harvested. As a result, the removal of P in HSF CWs is usually low and typically amounts to only 40 to 60% during the treatment of municipal or domestic sewage. The average inflow and outflow P concentrations for vegetated beds of Czech HSF CWs were 6.6 mg L-1 and 3.6 mgL-1, respectively. The average P removal was 45.7%. Despite a wide fluctuation of inflow phosphorus loading rates in the Czech CWs (10.9 – 356 g P m-2 a-1) the retention of P is well predictable. The CWs in the Czech Republic are relatively new and therefore, it is not possible to evaluate long-time performance of P removal. However, results from systems that have been in operation for longer periods (maximum of 9 years) indicate that P removal decreases over years probably as a result of limited sorption capacity. The amount of P removed by aboveground Phragmites biomass is very low and usually does not exceed 5% of the total removed P in the beginning of operation. As the sorption decreases over years and macrophyte biomass increases at the same time the importance of P bound in biomass becomes higher but it rarely exceeds the level of 20% of the total P removed.  相似文献   

11.
Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 μeq L-1 at Pluhuv Bor compared to 400 μeq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment.  相似文献   

12.
The purpose of the present work was to investigate the chemistry of rain in the Gulf of Iskenderun, North East Mediterranean, Turkey. The Gulf region has a large number of industries. Main industries existing in the region are iron and steel works, fertilizer plants, a cement plant, and several medium and mini size steel mills in addition to the international pipe line terminals. This study aims to apportion the local sources contributing to the overall pollution of the region. To this end a precipitation sampling program was started in January 2000, and over 48 precipitation samples were collected from each of 5 stations located at Iskenderun city center, Iskenderun industrial zone, Payas city center, the campus of Iskenderun Technical College and the campus of Mustafa Kemal University. Samples were analysed for pH, NO3 +, Cl-. Ca, Al, Ba, Na, Cd, Co, Cr, Cu, Pb, Li, Mg, Mn, Ni, Zn, Fe, K. Concentrations of metal ions were determined by ICP-AES. NO3 - ions and pH were determined by using NO3 - selective electrode and pH meter, respectively.pH values of the collected samples at the industrial zone and at Payas city center, ranged between 5.02 and 7.38, respectively. NO3 - and metal ions concentrations were highly variable. Concentrations of Ca and Fe ions were higher in the industrial zone and Payas city center. In the other three stations, concentrations of metal ions and NO3 - ion were lower than that of industrial zone and the values of pH ranged between 6 and 7.4. The average pH values at Iskenderun Gulf showed that the precipitation was not acidic, because of the high concentration of Ca. The highest concentrations of Na and Cl ions were recorded in the University campus because the campus is located by the Mediterranean Sea.  相似文献   

13.
More than 85% of the mountainous spruce forest of the Bavarian Forest National Park died after bark beetle attack during the last decade. The elemental budget of intact stands and of different stages after the dieback was investigated. N-fluxes in throughfall of intact stands were lower (12–16 kg ha-1 a-1) than in an earlier study in an intact mountainous spruce stand in the Bavarian Forest National Park and were reduced in the first years after the dieback (3–5 kg N ha-1 a-1). Nitrate-N fluxes by seepage water of intact stands at 40 cm depth, which is below the main rooting zone, were moderate (5–9 kg ha-1 a-1). After the dieback of the stands, NH4 + concentrations were increased in humus efflux as were NO3 - concentrations in mineral soil. Due to the relatively high precipitation, dilution of the elemental concentrations in seepage was considerable.Therefore, NO3 - concentrations were usually below the level of drinking water (806 μmol NO3 - L-1), with lowest concentrations after the snowmelt and highest in autumn. Nitrate concentrations were elevated from the first year until the 7th year after the dieback. Total NO3 --N losses by seepage until the 7th year after the dieback equalled 543 kg N ha-1. Aluminium fluxesafter the dieback were enhanced in the mineral soil from 55 to 503 mmolc m-2 a-1 (average of 8 yr), K+ fluxes from 8 to 37 mmolc m-2 a-1, and Mg2+ fluxes from 13 to 35 mmolc m-2 a-1. The consequences for the nutritional status of the ecosystem, the hydrosphere, and forest management are discussed in the paper.  相似文献   

14.
Nitrous oxide emission from some English and Welsh rivers and estuaries   总被引:1,自引:0,他引:1  
Nutrient and N2O concentrations in the water columns were measured seasonally over a full salinity range in the nutrified rivers Colne, Stour, Orwell, Deben, Trent, Ouse and Humber and their estuaries on the east coast of England between August 2001 and May 2002, and in the oligotrophic rivers Conwy, Dovey and Mawddach in North and West Wales between August 2002 and May 2003. Nutrient and N2O concentrations in the nutrified English rivers and estuaries were much higher than those in the Welsh rivers. N2O concentrations and % saturation in the estuaries were significantly correlated with nitrate, nitrite and ammonium concentrations in the water. The strongest correlation was with nitrite (r 2 = 0.56, p < 0.01), suggesting that nitrite was the most significant factor among the different nutrients in regulating N2O concentration in the estuaries. N2O concentrations in the English rivers and estuaries were supersaturated throughout the year with annual averages from 186.9 to 992.9%, indicating that these rivers and estuaries were sources of atmospheric N2O, whereas in the Welsh rivers N2O concentrations were much lower with annual averages from 113.6 to 137.4% saturation. Although the estuarine area in the Colne was almost the same as that in the Conwy, the annual N2O emission from the Colne was much higher (937498 mol N yr?1) than in the Conwy (23020 mol N yr?1). On the east coast, riverine emissions of N2O were only 0.5–12.5% of the total emission from rivers and estuaries. Thus rivers were negligible, but estuaries were significant contributors to the UK N2O inventory.  相似文献   

15.
Nitrous oxide emission from some English and Welsh rivers and estuaries   总被引:4,自引:0,他引:4  
Nutrient and N2O concentrations in the water columns were measured seasonally over a full salinity range in the nutrified rivers Colne, Stour, Orwell, Deben, Trent, Ouse and Humber and their estuaries on the east coast of England between August 2001 and May 2002, and in the oligotrophic rivers Conwy, Dovey and Mawddach in North and West Wales between August 2002 and May 2003. Nutrient and N2O concentrations in the nutrified English rivers and estuaries were much higher than those in the Welsh rivers. N2O concentrations and % saturation in the estuaries were significantly correlated with nitrate, nitrite and ammonium concentrations in the water. The strongest correlation was with nitrite (r2 = 0.56, p < 0.01), suggesting that nitrite was the most significant factor among the different nutrients in regulating N2O concentration in the estuaries. N2O concentrations in the English rivers and estuaries were supersaturated throughout the year with annual averages from 186.9 to 992.9%, indicating that these rivers and estuaries were sources of atmospheric N2O, whereas in the Welsh rivers N2O concentrations were much lower with annual averages from 113.6 to 137.4% saturation. Although the estuarine area in the Colne was almost the same as that in the Conwy, the annual N2O emission from the Colne was much higher (937498 mol N yr–1) than in the Conwy (23020 mol N yr–1). On the east coast, riverine emissions of N2O were only 0.5–12.5% of the total emission from rivers and estuaries. Thus rivers were negligible, but estuaries were significant contributors to the UK N2O inventory.  相似文献   

16.
The deposition of trace elements and their fate in a forest ecosystemhas been monitored at the experimental site, Lesni Potok catchment (LP), with granite bedrock. The catchment is located 30 km ESE from Prague. Annual bulk Pb-deposition flux FPb was 3.41 kg km-2 a-1 in 1994 and gradually decreased to 0.49 kg km-2 a-1 in 2001. The decrease is comparable with those observed in Germany and in the U.S.A. in the 1970s and 1980s. The total sales ban of leaded gasoline in the Czech Republic since January 2001 was accompanied by a pronounced decrease of FPb in a single year. The residual Pb-deposition flux is assigned to both the long-range transport of fine-grained vehicular lead aerosol (with a long residence time in the atmosphere) and to theemissions from power plant boilers burning lignite mined in the Czech northwest coal basin. The FPb of lead correlates stronglywith those of As, Cd, Cu, Zn and Be, the typical metals in coal fly ash, at two monitored sites. Topsoil horizons contain elevated concentrations of Pb (53–67 mg kg-1), which are of anthropogenicorigin. Soils in the riparian areas contain increased concentrations of Pb when compared to soils on the hillslope areas. Significant amounts of Pb were found on a stream substrate and Fe-precipitate sampled from the stream. Low concentrations of Pb in bark and bole wood suggest that the uptake of Pb by vegetation is negligible. The very small surface water outputs (average of 0.002 kg km-2 a-1) compared to inputs (average of 1.890 kg km-2 a-1) from the LP catchment indicate an ongoing accumulation of Pb in a forested landscape.  相似文献   

17.
Soil solution samples were taken from two sites (Horröd and Hasslöv) in the south part of Sweden to evaluate how soil solution chemistry responded to different treatmentswith dolomite and wood ash. At Horröd, samples were taken four years after application of wood ash, 4.28 ton ha-1 and dolomite, 3.25 ton ha-1. At Hasslöv dolomite, 3.45 ton ha-1 and 8.75 ton ha-1 was applied and samples were taken 15 yr later. It was found that treatment with dolomite at one site (Hasslöv) resulted in higher pH values (<2 pH units) and higher nitrification. It was also found at this site that the total Al and the inorganic Al concentrations decreased with dolomite treatment. The Ca, Mg, DOC, Fe, SO4 2- and Cl- concentrations, mainly in the topsoil, were found to be higher at both sites, following dolomite treatment; Ca and Mg concentrations were 2–8 times higher (<820 M) than in controls (<70 M). Wood ash was found to have less impact. The PO4 concentration in the O2 horizon at Hasslöv decreased due to dolomite-treatment. ANOVA (Analyse of Variance) and PLS (Partial Least Square) were used to evaluate the data from the two sites.  相似文献   

18.
The concentration of water-soluble organic nitrogen (WSON) in precipitation has been measured at seven sites across the United Kingdom, over a period of 1–2 years, using protocols developed in a pilot study. Samples were collected over 1–2 weeks in continuously open funnels made of stainless steel, draining to a glass bottle, and were preserved during and after collection by the addition of thymol. After chemical analysis, samples were excluded from the long-term average if they showed signs of contamination (significant concentrations of K+ or PO4 3–). Two methods of measuring total dissolved N were used, persulphate oxidation and high-temperature chemiluminescence. The latter generally gave the larger values, and has been used to asses the organic component of dissolved N. The long-term data set confirms the original results from the pilot study - organic N contributes between 24 and 40% to the total annual wet deposition of dissolved N across the United Kingdom. The fraction of WSON was greatest at western sites, and was strongly correlated with ammonium concentrations. However, the seasonal pattern across all sites showed a late spring maximum for ammonium and nitrate, but a late summer maximum for WSON. The magnitude of the contribution of WSON to wet-deposited N has implications for the setting and assessment of critical loads for N deposition.  相似文献   

19.
Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 μmol N2O m?2 day?1 and 2518 μmol N2 m?2 day?1, respectively, from the Couesnon and 109 μmol N2O m?2 day?1 and 303 μmol N2 m?2 day?1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.  相似文献   

20.
Soil acidity parameters (pH, basesaturation, exchangeable Al) in the organic and mineralsoil layers and in soil water (pH, dissolved organiccarbon, total Al, Al3+ and molar Ca/Al ratios) insix Norway spruce stands in different parts of Finlandwere compared. An attempt was also made to relate thedegree of defoliation in the tree stand to N and Sdeposition and soil parameters. No relationship was foundbetween soil acidity parameters and defoliation in thesix stands. Defoliation was positively correlated withstand age and the C/N ratio of the organic layer, andnegatively with the cation exchange capacity. The plotlocated on a so-called sulphate soil on the west coast ofFinland had very low soil pH values, and extremely highAl and SO4 2- concentrations and molar Ca/Alratios of well below 1.0 in soil water. Despite the highnatural acidity in the soil on this plot, defoliation inthe spruce stand was the lowest (mean 8.6%) of all sixplots. The results of this study indicate that soilacidity is not a major factor affecting stand conditionin these spruce stands, and that the variation in soilacidity parameters is closely related to climatic factorsand natural soil formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号