首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biodegradation of polycyclic aromatic hydrocarbons (PAHs) during the process of bioremediation can be constrained by lack of nutrients, low bioavailability of the contaminants, or scarcity of PAH-biodegrading microorganisms. This study focused on addressing the limitation of nutrient availability for PAH biodegradation in oil-contaminated beach sediments. In our previous study, three nutrient sources including inorganic soluble nutrients, the slow-release fertilizer Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA), as well as their combinations, were applied to beach sediments contaminated with an Arabian light crude oil. Osmocote was the most effective nutrient source for aliphatic biodegradation. This study presents data on PAH biodegradation in the oil-spiked beach sediments amended with the three nutrients. Biodegradation of total target PAHs (two- to six-ring) in all treatments followed a first-order biodegradation model. The biodegradation rates of total target PAHs in the sediments treated with Os were significantly higher than those without. On Day 45, approximately 9.3% of total target PAHs remained in the sediments amended with Os alone, significantly lower than the 54.2 to 58.0% remaining in sediment treatments without Os. Amendment with Inipol or soluble nutrients alone, or in combination, did not stimulate biodegradation rates of PAHs with a ring number higher than 2. The slow-release fertilizer (Os) is therefore recommended as an effective nutrient amendment for intrinsic biodegradation of PAHs in oil-contaminated beach sediments.  相似文献   

2.
A 105-d field experiment was conducted to determine the potential of the slow-release fertilizer, Osmocote (Scotts, Marysville, OH), to stimulate the indigenous microbial biodegradation of petroleum hydrocarbons in an oil-spiked beach sediment on an intertidal foreshore in Singapore. Triplicate microcosms containing 80 kg of weathered sediment, spiked with 5% (w/w) Arabian light crude oil and 1.2% (w/w) Osmocote pellets, were established, together with control microcosms minus Osmocote. Relative to the control, the presence of the Osmocote sustained a significantly higher level of nutrients (NH(4)(+)-N, NO(3)(-)-N, and PO(4)(3-)-P) in the sediment pore water over the duration of the experiment. The metabolic activity of the indigenous microbial biomass, as measured using an intracellular dehydrogenase enzyme assay, was also significantly enhanced over the duration of the experiment in amended sediments. The loss of total recoverable petroleum hydrocarbons (TRPH) and biodegradation of total n-alkanes (C(10)-C(33)), branched alkanes (pristane and phytane), as well as total target polycyclic aromatic hydrocarbons (PAHs) (two- to six-ring), in both the control and Osmocote-amended sediments, followed a first-order biodegradation model. The first-order loss rate of total recoverable petroleum hydrocarbons was 2.57 times greater than that of the control. The hopane-normalized rate constants for total n-alkane, branched alkane, and total target PAH biodegradation in the Osmocote-treated sediments were 3.95-, 5.50-, and 2.45-fold higher than the control, respectively. Overall, the presence of Osmocote was able to significantly enhance and accelerate the biodegradation of aliphatics and PAHs in oil-contaminated sediments under natural field conditions in an intertidal foreshore environment.  相似文献   

3.
The bioavailability and biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be increased through the addition of surfactants. Previous studies of this nature have been conducted under mesophilic conditions. Hence, the aim of the present study was to investigate the effects of synthetic surfactants and biosurfactants on solubilization and degradation of phenanthrene (PHE) in a series of batch solution experiments under thermophilic conditions. Tween 80, Triton X-100, and biosurfactants produced from Pseudomonas aeruginosa strain P-CG3 (P-CG3) and Pseudomonas aeruginosa ATCC 9027 (P. 9027) were used in this study. Surfactants effectively enhanced the solubility of PHE at 50 degrees C and the biosurfactant from P-CG3 was most effective with a 28-fold increase in apparent solubility of PHE at a concentration of 10 x critical micelle concentration (CMC) compared with the controls. However, addition of synthetic surfactants or biosurfactants inhibited the biodegradation of PHE in mineral salts medium by an isolate Bacillus sp. B-UM. Degradation of PHE diminished with increasing surfactant concentrations, and PHE degradation was completely inhibited for all the surfactants tested when the concentrations were greater than their respective CMC. The growth test suggested that Tween 80 and biosurfactants were degradable, but preferential utilization of these surfactants as substrates was not the mechanism for explaining the inhibition of PHE biodegradation. Because of the hydrophobic property of B-UM, degradation inhibition of PHE by surfactants was probably due to the reduction of direct contact between bacterial cells and PHE.  相似文献   

4.
Sequential supercritical fluid (CO2) extraction (SSFE) was applied to eight historically contaminated soils from diverse sources with the aim to elucidate the sorption-desorption behavior of high molecular weight polycyclic aromatic hydrocarbons (PAHs). The method involved five extraction phases applying successively harsher conditions by increasing fluid temperature and density mobilizing target compounds from different soil particle sites. Two groups of soils were identified based on readily desorbing (available) PAH fractions obtained under mildest extraction conditions (e.g., readily desorbing fractions of fluoranthene and pyrene significantly varied between the soils ranging from <10 to >90%). Moreover, extraction behavior strongly correlated with molecular weight revealing decreasing available PAH fractions with increasing weight. Physicochemical soil parameters such as particle size distribution and organic dry mass were found to have no distinct effect on the sorption-desorption behavior of PAHs in the different soils. However, PAH profiles significantly correlated with readily available pollutant fractions; soils with relatively less mobile PAHs had higher proportions of five- and six-ring PAHs and vice versa. Eventually, biodegradability corresponded well with PAH recoveries under the two mildest extraction phases. However, a quantitative relationship was only established for soils with biodegradable PAHs. Out of eight soils, five showed no biodegradation including the four soils with the lowest fraction of readily desorbing PAHs. Only one soil (which was found to be highly toxic to Vibrio fischeri) did not match the overall pattern showing no PAH biodegradability but large fractions of highly mobile PAHs, concluding that mass transfer limitations may only be one of many factors governing biodegradability of PAHs.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three-ring PAH) is converted by sunlight to more polar products such as 9,10-phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open-ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two- and three-ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04-4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH-degrading cultures were able to use PheQ as sole carbon source; however, the Phe-degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene-containing mixtures can resist biodegradation.  相似文献   

6.
The potential of periwinkle shell (PS) in enhancing the microbial break down of crude oil spilled in soil were studied. The results revealed that the counts of crude oil degrading bacteria in oil-polluted soil fortified with PS were higher than the counts in unfortified soil. The rates and total extent of crude oil biodegradation in the soil were stimulated by the amendment. About 43.4 percent of crude oil was degraded in unfortified soil after 16 days as compared to 70.1 percent oil biodegradation, which occurred in PS fortified soil during the same period. These values were significantly (P>0.05) different from each other. Amendment of the soil with PS also raised the pH of the soil from acidic to alkaline range. The crude oil degrading microorganisms identified in PS amended soil were of the genus Pseudomonas, Bacillus, Micrococcus, Acinetobacter, Penicillium, Aspergillus, Mucor and Rhizopus. Similarly, Pseudomonas, Bacillus, Micrococcus, Mucor, Aspergillus and Penicillium were identified as crude oil degrading microorganisms in unamended soil. The bacteria formed either stable or unstable emulsions, suggesting that the organisms produce surface-active agents (biosurfactants) during the biodegradation process. The results of this study indicate that PS can be used in reclaiming oil-polluted soil.  相似文献   

7.
Bioaccessibility is one of the most relevant aspects to be considered in the restoration of soils using biological technologies. Polycyclic aromatic hydrocarbons (PAH) usually have residual fractions that are resistant to biodegradation at the end of the biological treatment. In some situations, these residual concentrations could still be above legal standards. Here, we propose that the available knowledge about electroremediation technologies could be applied to enhance bioremediation of soils polluted with PAH. The main objective of this study was to show that a previous electrokinetic treatment could reduce the PAH residual fractions when the soil is subsequently treated by means of a bioremediation process. The approach involved the electrokinetic treatment of PAH-polluted soils at a potential drop of 0.9 to 1.1 V/cm and the subsequent estimations of bioaccessibility of residual PAHs after slurry-phase biodegradation. Bioaccessibility of PAH in two creosote-polluted soils (clay and loamy sand, total PAH content averaging 300 mg/kg) previously treated with an electric field in the presence of nonionic surfactant Brij 35 was often higher than in untreated controls. For example, total PAH content remaining in clay soil after bioremediation was only 62.65 +/- 4.26 mg/kg, whereas a 7-d electrokinetic pretreatment had, under the same conditions, a residual concentration of 29.24 +/- 1.88 mg/kg after bioremediation. Control treatments without surfactant indicated that the electrokinetic treatment increased bioaccessibility of PAHs. A different manner of electric field implementation (continuous current vs. current reversals) did not induce changes in PAH bioaccessibility. We suggest that this hybrid technology may be useful in certain bioremediation scenarios, such as soils rich in clay and black carbon, which show limited success due to bioavailability restrictions, as well as in highly heterogeneous soils.  相似文献   

8.
In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. These analyses have been extended to include 75 small estuarine systems across the mid-Atlantic and southern New England regions of the USA. Because of the different characteristics and dynamics of the estuaries across these regions, adjustment for differing hydrology, sediment characteristics, and sediment origins were included in the analysis. Multiple linear regression with stepwise selection was used to develop statistical models for sediment metals, organics, and total polycyclic aromatic hydrocarbons (PAHs). The landscape metrics important for explaining the variation in sediment metals levels (R2 = 0.72) were the percent area of nonforested wetlands (negative contribution), percent area of urban land, and point source effluent volume and metals input (positive contributions). The metrics important for sediment organics levels (R2 = 0.5) and total PAHs (R2 = 0.46) were percent area of urban land (positive contribution) and percent area of nonforested wetlands (negative contribution). These models included silt-clay content (metals) or total organic C (organics, total PAHs) of sediments and grouping by estuarine hydrology, suggesting the importance of sediment characteristics and hydrology in mitigating the influence of the landscape metrics on sediment contamination levels. The overall results from this study are indicative of how statistical models can be developed relating landscape metrics to estuarine sediment contamination for distributions of land cover and point source discharges.  相似文献   

9.
石油污染生物修复技术研究   总被引:2,自引:0,他引:2  
谢丹平 《四川环境》2006,25(4):109-112
本文概述了影响石油污染物生物降解修复处理的多种因素,对石油污染生物处理技术的发展进行了展望。其中主要影响因素包括:菌种的影响,菌种在不同的环境中和对不同碳链长度的碳氢化合物表现出不同的降解效率;石油物质本身物理化学特性的影响,如石油物质在水体或土壤中的浓度以及石油的粘度、沸点、折射率等特性;生存环境条件的影响,在接种入高效率的降解菌或利用土著微生物进行降解时,降解率受到生存环境中各种条件的影响,如表面活性剂、光照条件、吸附剂的利用、营养盐、共代谢底物、氧气、温度、盐度等。  相似文献   

10.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   

11.
Oil is the world’s primary source of non-renewable energy, and it has also contaminated ocean coastlines due to spills. It is therefore important to have remediation treatments that are both effective, and ecologically not harmful. Current in situ bioremediation methods consist primarily of biostimulation, through addition of nutrients, and bioaugmentation, the addition of hydrocarbon degrading microorganisms. The purpose of this article is to discuss successful and unsuccessful remediation through the use of biostimulation, bioaugmentation, or a combination of both. As microbial treatments are capable of enhancing coastal oil remediation in temperate and tropical settings, the success of a particular remediation approach will be determined based on the type and amount of oil, type of soil and/or sediment, microbial inoculants and the often changing physical, chemical and biological environmental conditions. Environmental factors and limitations will be discussed as to why certain bioremediation events were successful while others were not.  相似文献   

12.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that are toxic to human and nonhuman organisms. Dietary intake of PAHs is a dominant route of exposure for the general population because food crops are a major source of dietary PAHs. The mechanism for crop root uptake of PAHs remains unclear. Here we reveal that wheat root uptake of PAHs involves active and passive processes. The passive uptake is mercury and glycerol dependent. Mercury and glycerol inhibit uptake, indicating that aquaglyceroporins sensitive to mercury contribute to passive uptake. Active uptake is mediated by a phenanthrene/H symporter. The electrical response of wheat roots triggered by phenanthrene consists of two sequential phases: depolarization followed by repolarization. The depolarization is phenanthrene concentration dependent, with saturation kinetics that have an apparent of K(m) 10.8 μmol L(-1). As uptake proceeds, external solution pH increase is noticed. Lower pH favors the uptake. Vanadate and 2,4-dinitrophenol suppress the electrical response to phenanthrene and phenanthrene uptake, suggesting that plasma membrane H(+)-ATPase is involved in the establishment of an electrochemical proton gradient acting as a driving force for active uptake. Therefore, it is suggested that aquaglyceroporin and phenanthrene/H symporter are implicated in phenanthrene uptake. Our results provide insight into PAH uptake mechanism in wheat roots that is relevant to strategies for reducing PAH accumulation in wheat for food safety, improving phytoremediation of PAH-contaminated soils or water by agronomic practices and genetic modification to target remedial plants for higher PAH uptake capacity.  相似文献   

14.
白腐菌降解纤维素和木质素的研究进展   总被引:20,自引:0,他引:20  
纤维素和木质素是潜在的可再生资源,近年来,利用微生物对它们进行降解已成为研究的热点。虽然纤维素较木质素易降解,但其被木质素包裹,故降解的关键问题就是木质素的降解。本文从木质纤维素的生物可降解性出发,重点讨论白腐菌降解木质素酶系及其作用机理。  相似文献   

15.
Matching biological and chemical data were compiled from numerous modeling, laboratory, and field studies performed in marine and estuarine sediments. Using these data, two guideline values (an effects range-low and an effects range-median) were determined for nine trace metals, total PCBs, two pesticides, 13 polynuclear aromatic hydrocarbons (PAHs), and three classes of PAHs. The two values defined concentration ranges that were: (1) rarely, (2) occasionally, or (3) frequently associated with adverse effects. The values generally agreed within a factor of 3 or less with those developed with the same methods applied to other data and to those developed with other effects-based methods. The incidence of adverse effects was quantified within each of the three concentration ranges as the number of cases in which effects were observed divided by the total number of observations. The incidence of effects increased markedly with increasing concentrations of all of the individual PAHs, the three classes of PAHs, and most of the trace metals. Relatively poor relationships were observed between the incidence of effects and the concentrations of mercury, nickel, total PCB, total DDT and p,p′-DDE. Based upon this evaluation, the approach provided reliable guidelines for use in sediment quality assessments. This method is being used as a basis for developing National sediment quality guidelines for Canada and informal, sediment quality guidelines for Florida. The methods and guidelines presented in this report do not necessarily represent the policy of the National Oceanic and Atmospheric Administration, Environment Canada, or Florida Department of Environmental Protection.  相似文献   

16.
Contamination of soil by hazardous substances poses a significant threat to human, environmental, and ecological health. Cleanup of the contaminants using destructive, invasive technologies has proven to be expensive and more importantly, often damaging to the natural resource properties of the soil, sediment, or aquifer. Phytoremediation is defined as the cleanup of contaminated sites using plants. There has been evidence of enhanced polycyclic aromatic hydrocarbons (PAHs) degradation in rhizosphere soils for a limited number of plants. However, research focusing on the degradation of PAHs in the rhizosphere of trees is lacking. The objective of this study was to assess the potential use of trees to enhance degradation of PAHs located in manufactured gas plant-impacted soils. In greenhouse studies with intact soil cores, acenaphthene, anthracene, fluoranthene, naphthalene, and phenanthrene decreased significantly (p < 0.05) in green ash (Fraxinus pennsylvanica Marshall) and hybrid poplar (Populus deltoides x P. nigra DN 34) phytoremediation treatments when compared to the unplanted soil control. Increases in PAH microbial degraders in rhizosphere soil were observed when compared to unvegetated soil controls. In addition, the rate of degradation or biotransformation of PAHs was greatest for soils with black willow (Salix nigra Marshall), followed by poplar, ash, and the unvegetated controls. These results support the hypothesis that a variety of plants can enhance the degradation of target PAHs in soil.  相似文献   

17.
A solid-phase microbiological assay was used to determine the changes in genotoxicity associated with sequestration or biodegradation of carcinogenic compounds in contaminated soils. The concentration of six carcinogenic polycyclic aromatic hydrocarbons (PAHs) did not change in 59 d in sterile soil, but the genotoxicity declined markedly. In a soil undergoing bioremediation in the field for 147 d or biodegradation in the laboratory for 180 d, the concentrations either changed little or declined at different rates, but the genotoxicity increased followed by a decline. The genotoxicity of a second soil declined as a result of biological treatment. The data show that genotoxicity of contaminated soils may be unrelated to the concentration of carcinogenic PAHs because of aging or new mutagens formed during biological treatment.  相似文献   

18.
Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.  相似文献   

19.
Before wood ash can be safely used as a fertilizer in forests, possible negative effects such as input of organic contaminants or remobilization of contaminants already stored in the soil must be investigated. The objective of this study was to examine the effects of wood ash application on concentrations, storage, and distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in a Swiss forest soil. In May 1998, we added 8 Mg wood ash ha(-1) to a forest soil. We determined 20 PAHs and 14 PCBs in the organic layer, in the bulk mineral soil, and in soil material taken from preferential flow paths and from the matrix before and after the wood ash application. In the control plots, the concentrations of PAHs in the organic layer indicated moderate pollution (sum of 20 PAHs: 0.8-1.6 mg kg(-1)), but sum of PCB concentrations was high (21-48 microLg kg(-1)). The wood ash had high concentrations of PAHs (sum of 20 PAHs: 16.8 mg kg(-1)), but low concentrations of PCBs (sum of 14 PCBs: 3.4 microg kg(-1)). The wood ash application increased the PAH concentrations in the organic horizons up to sixfold. In contrast, PCB concentrations did not change in the Oa horizon and decreased up to one third in the Oi and Oe horizons. The decrease was probably caused by the mobilization of stored PCBs because of the high pH of the wood ash. This probably results in a higher mobility of dissolved organic matter, acting as PCB carrier. In the mineral soil, the preferential flow paths of the A horizon contained more PAHs and PCBs (+20 +/- 15% and +43 +/- 60%, respectively) than the matrix. This was particularly true for higher molecular weight compounds (molecular weight > 200 g mol(-1)). Below 50 cm depth, concentrations of PAHs and PCBs were smaller in the preferential flow paths, suggesting that in deeper depths, processes acting as sinks dominated over inputs in the preferential flow paths.  相似文献   

20.
Carbon-enriched fractions have been obtained from two coal fly ash (FA) samples. The FA came from two pulverized-coal fired power stations (Lada and Escucha, Spain) and were collected from baghouse filters. Sieving was used to obtain carbon-enriched fractions, which were further subjected to two beneficiation processes: acid demineralization using HCl and HF, and oil agglomeration using soya oil-water. Yield in weight after sieving, unburned carbon content, and several physicochemical characteristics of the obtained fractions were used to compare the performance of the beneficiation methods. Low carbon concentration was obtained by sieving, particularly in the case of Escucha FA. However, after acid demineralization or oil agglomeration, fractions containing unburned carbon in a range of 63% to 68% were obtained. These fractions showed differences in mineral phase composition and distribution depending on the FA and on the beneficiation method used. The textural properties of the obtained fractions varied as a function of their carbon content and the beneficiation method used. However, no significant differences in morphology of the carbonaceous particles were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号