首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sample drying effects on lead bioaccessibility in reduced soil   总被引:1,自引:0,他引:1  
Risk-assessment tests of contaminated wetland soils often use experimental protocols that artificially oxidize the soils. Oxidation may impact bioavailability of contaminants from the soils, creating erroneous results and leading to improper management and remediation. The goal of this study was to determine if oxygenation of reduced sediments and soils influences Pb bioaccessibility measurements. The study site is located on the Coeur d'Alene River floodplain, downstream from the Silver Valley Mining District in Idaho. A physiologically based extraction test designed to simulate the gastrointestinal tract of waterfowl (W-PBET) was used to measure relative Pb bioavailability (bioaccessibility) from the soils. The soils were collected from a submerged wetland. One set of samples was allowed to air-dry, another set was freeze-dried, and a third set was analyzed wet. The wet soil showed decreased Pb bioaccessibility compared with the air- and freeze-dried soils. The changes in extractability of Fe and Mn on air-drying were opposite from each other: Fe extractability decreased while Mn increased. The results from this study show that redox changes may have significant impacts on Pb bioavailability, and should be considered when assessing Pb contamination risks in reduced soils.  相似文献   

2.
The binding efficiency of chitosan samples for Ag(+), Cd(2+), Cu(2+), Pb(2+) and Zn(2+) has been evaluated in order to consider their application to remediate metal contaminated soil and water. The sorption behaviour of metal ions was assessed using a batch technique at different contact time and initial metal concentration with different background electrolytes. The kinetics followed a pseudo-second-order model, while the equilibrium data correlated well with the Freundlich and Langmuir isotherm models. For example, the maximum sorption capacity (Q) for chitosan was estimated as 1.93 mmol/g for Ag(+), 1.61 mmol/g for Cu(2+), 0.94 mmol/g for Zn(2+), 0.72 mmol/g for Cd(2+) and 0.64 mmol/g for Pb(2+). Covalent interaction between metal ions and functional groups (amino and hydroxyl) of the chitosans was the main binding mechanism. Ion exchange is not an important process. Chitosan and cross-linked chitosans were able to bind metal ions in the presence of K(+), Cl(-) and NO(3)(-). The nature of Cl(-) and NO(3)(-) ions did not affect Zn(2+) binding by the chitosans. Even at 11x dilution, the chitosans were able to retain metal ions on their surfaces.  相似文献   

3.
Phosphate treatments can reduce metal dissolution and transport from contaminated soils. However, diammonium phosphate (DAP) has not been extensively tested as a chemical immobilization treatment. This study was conducted to evaluate DAP as a chemical immobilization treatment and to investigate potential solids controlling metal solubility in DAP-amended soils. Soil contaminated with Cd, Pb, Zn, and As was collected from a former smelter site. The DAP treatments of 460, 920, and 2300 mg P kg-1 and an untreated check were evaluated using solute transport experiments. Increasing DAP decreased total metal transported. Application of 2300 mg P kg-1 was the most effective for immobilizing Cd, Pb, and Zn eluted from the contaminated soil. Metal elution curves fitted with a transport model showed that DAP treatment increased retardation (R) 2-fold for Cd, 6-fold for Zn, and 3.5-fold for Pb. Distribution coefficients (Kd) increased with P application from 4.0 to 9.0 L kg-1 for Cd, from 2.9 to 10.8 L kg-1 for Pb, and from 2.5 to 17.1 L kg-1 for Zn. Increased Kd values with additional DAP treatment indicated reduced partitioning of sorbed and/or precipitated metal released to mobile metal phases and a concomitant decrease in the concentration of mobile heavy metal species. Activity-ratio diagrams indicated that DAP decreased solution Cd, Pb, and Zn by forming metal-phosphate precipitates with low solubility products. These results suggest that DAP may have potential for protecting water resources from heavy metal contamination near smelting and mining sites.  相似文献   

4.
The long-term application of biosolids that periodically contained elevated metal concentrations has raised questions about potential effects on animal health. To address these concerns, we determined metal concentrations (As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn) in both soil and bermudagrass [Cynodon dactylon (L.) Pers.] forage from 10 fields in the following categories of biosolids application: six or more years (>6YR), less than six years (<6YR), and no applications (NS). Soil metal concentrations in all groups were similar to values reported for mineral soils in Georgia, and well below USEPA cumulative limits. Average metal concentrations in the forage were below the maximum tolerable level (MTL) for beef cattle, although two biosolids-amended fields in the >6YR group produced forage that was at or near the MTL for Cd and Mo, and one field in the <6YR group produced forage above the MTL for Cd. The Cu to Mo ratios in forage decreased with increasing time of sludge application, with the average in the >6YR group at a proposed 5:1 Cu to Mo ratio limit to protect ruminant health. Sulfur concentrations in the forage from all three groups was near the MTL of 4 g kg(-1). The study indicated that toxic levels of metals have not accumulated in the soils due to long-term biosolids application. Overall forage quality from the biosolids-amended fields was similar to that of commercially fertilized fields; however, due to the relatively high S and potential for a low Cu to Mo ratio, Cu supplements should be used to ensure ruminant health.  相似文献   

5.
Colloid generation and transport in soils is of significance because of suspected colloid-facilitated transport of contaminants to the groundwater. In this study, colloid mobilization and its effect on the transport of arsenite [As(III)] were investigated in Olivier (fine-silty, mixed, active, thermic Aquic Fraglossudalfs) and Windsor (mixed, mesic typic Udipsamments) soil columns. Input solution of 10 mg L(-1) As(III) in 0.01 M NaCl was applied to water-saturated columns, and followed by leaching with deionized water (DIW). Flow interruptions were performed during the As(III) input and DIW leaching phases. Turbidity, electrical conductivity (EC), and pH of column effluents were monitored with time. Total and dissolved concentrations of As, Fe, and Al were analyzed. Effluent results demonstrated that colloid-facilitated transport contributed little to arsenic movement when the solution ionic strength was maintained constant. Mobilization of colloidal amorphous material and enhanced transport of As(III) were observed as a result of changes in ionic strength of the input solution. The peak of colloid generation coincided with peak concentrations of Fe, suggesting mobilization of Fe oxides and facilitated transport of As(III) adsorbed on oxide surfaces. Colloid mobilization was enhanced due to flow interruption in the Olivier column, which suggests slow dissociation of aggregated colloidal particles. Moreover, effluent results indicate significant effect of organic matter in stabilizing aggregates of colloidal particles.  相似文献   

6.
Removal of heavy metal ions from wastewaters: a review   总被引:30,自引:0,他引:30  
Heavy metal pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation-flocculation, flotation and electrochemical methods. About 185 published studies (1988-2010) are reviewed in this paper. It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.  相似文献   

7.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

8.
This paper reports the use of a new technique, flow field-flow fractionation (FlFFF), for the characterization of soil sampled under grassland. FlFFF can be used to determine the fine colloidal material in the <1 microm fraction obtained by gravitational settling of 1% m/v soil suspensions. The aim of this work was to determine the potential of FIFFF to characterize soil colloids in drained and undrained field lysimeters from soil cores sampled at different depths. Two different grassland lysimeter plots of 1 ha, one drained and one undrained, were investigated, and the soil was sampled at 20-m intervals along a single diagonal transect at three different depths (0-2, 10-12, and 30-32 cm). The results showed that there was a statistically significant (P = 0.05) increase in colloidal material at 30- to 32-cm depth along the transect under the drained lysimeter, which correlates with disturbance of the soil at this depth due to the installation of tile drains at 85-cm depth backfilled to 30-cm depth with gravel. Laser sizing was also used to determine the particles in the size range 1 to 2000 microm and complement the data obtained using FlFFF because laser sizing lacks resolution for the finer colloidal material (0.1-1.0 microm). The laser sizing data showed increased heterogeneity at 30- to 32-cm depth, particularly in the 50 to 250 microm size fraction. Therefore FIFFF characterized the finer material and laser sizing the coarser soil fraction (<2000 microm) at depth in drained and undrained grassland. This is of importance as colloidal material is more mobile than the larger material and consequently an important vector for contaminant transport from agricultural land to catchments.  相似文献   

9.
Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are important sinks for trace elements in soil-residual systems. The pH of the soil-residual system is often the most important chemical property governing trace element sorption, precipitation, solubility, and availability. Trace element phytoavailability in residual-treated soils is often estimated using soil extraction methods. However, spectroscopic studies show that sequential extraction methods may not be accurate in perturbed soil-residual systems. Plant bioassay is the best method to measure the effect of residuals on phytoavailability. Key concepts used to describe phytoavailability are (i) the salt effect, (ii) the plateau effect, and (iii) the soil-plant barrier. Metal availability in soil from metal-salt addition is greater than availability in soil from addition of metal-containing residuals. Plant metal content displays plateaus at high residual loadings corresponding to the residual's metal concentration and sorption capacity. The soil-plant barrier limits transmission of many trace elements through the food chain, although Cd (an important human health concern) can bypass the soil-plant barrier. Results from many studies that support these key concepts provide a basis of our understanding of the relationship between trace element chemistry and phytoavailability in residual-treated soils. Research is needed to (i) determine mechanisms for trace element retention of soil-residual systems, (ii) determine the effect of residuals on ecological receptors and the ability of residuals to reduce ecotoxicity in metal-contaminated soil, and (iii) predict the long-term bioavailability of trace elements in soil-residual systems.  相似文献   

10.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

11.
The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.  相似文献   

12.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   

13.
In this study we have worked on the evaluation of heavy metal contamination in the sediments taken from the Tisza River and its tributaries, and thereby used the sequential extraction method, geochemical normalization, the calculation of the enrichment factor (EF), and the methods of statistical analysis. The chemical fractionation of Ni, Cu, Zn, Cr, Pb, Fe, and Mn, carried out by using the modified Tessier method, points to different substrates and binding mechanisms of Cu, Zn and Pb in sediments of the tributaries and sediments of the Tisza River. The similarities in the distributions of Fe and Ni in all types of sediments are the result of geochemical similarity as well as of the fact that natural sources mainly affect the concentration levels of these elements. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that metal contamination (Cu, Pb, Zn and Cr) was recorded in the sediments of the Tisza River, while no indications of pollution were detected in the tributaries of the Tisza River and the surrounding pools. The maximum values of the EF were close to 6 for Cu and Pb (moderately severe enrichment) and close to 4.5 for Zn (indicating moderate enrichment). It can be said that the Tisza River is slightly to moderately severely polluted with Cu, Zn, and Pb, and minorly polluted with Cr. It is concluded that sediments of the Tisza serve as a repository for heavy metal accumulation from adjacent urban and industrial areas.  相似文献   

14.
Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4'-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.  相似文献   

15.
Rapid and nondestructive methods such as diffuse reflectance infrared spectroscopy provide potentially useful alternatives to time-consuming chemical methods of soil metal analysis. To assess the utility of near-infrared reflectance spectroscopy (NIRS) and diffuse mid-infrared reflectance spectroscopy (DRIFTS) for soil metal determination, 70 soil samples from the metal mining region of Tarnowskie Gory (Upper Silesia, Poland) were analyzed by both chemical and spectroscopic methods. Soils represented a wide range of pH (4.0-8.0), total carbon (5.1-73.2 g kg(-1)), and textural classes (from sand to silty clay loam). Soils had various contents of metals (14-4500 mg kg(-1) for Zn, 18-6530 mg kg(-1) for Pb, and 0.17-34 mg kg(-1) for Cd), ranging from natural background levels to high contents indicative of industrial contamination in the region. Soil samples were scanned at the wavelengths from 400 to 2498 nm (near-infrared region) and from 2500 to 25000 nm (mid-infrared region). Calibrations were developed using the one-out validation procedure under partial least squares (PLS) regression. Mid-infrared spectroscopy markedly outperformed NIRS. Iron, Cd, Cu, Ni, and Zn were successfully predicted using DRIFTS. The coefficients of determination (R(2)) between actual and predicted contents were 0.97, 0.94, 0.80, 0.99, and 0.96 for those metals, respectively. Only Pb content was predicted poorly. Calibrations using NIRS were less accurate. Root mean squared deviation (RMSD) values were from 1.27 (Pb) to 3.3 (Ni) times higher for NIRS than for DRIFTS. Results indicate that DRIFTS may be useful for accurate predictions of metals if samples originate from one region.  相似文献   

16.
Chemical immobilization is a relatively inexpensive in situ remediation method that reduces soil contaminant solubility, but the ability of this remediation treatment to reduce heavy metal bioavailability and ecotoxicity to soil invertebrates has not been evaluated. Our objectives were to (i) assess the ability of chemical immobilization amendments (municipal sewage sludge biosolids and rock phosphate) to reduce metal bioavailability and toxicity in a toxic metal-contaminated smelter soil and (ii) evaluate soil extraction methods using Ca(NO3)2 solution or ion-exchange membranes coated with diethylenetriaminepentaacetic acid (DTPA) as surrogate measures of metal bioavailability and ecotoxicity. We treated a soil contaminated by Zn and Pb milling and smelting operations and an uncontaminated control soil with lime-stabilized municipal biosolids (LSB), rock phosphate (RP), or anaerobically digested municipal biosolids (SS) and evaluated lethality of the remediated soils to earthworm (Eisenia fetida Savigny). Lime-stabilized municipal biosolids was the only remediation amendment to successfully immobilize lethal levels of Zn in the smelter soil (14-d cumulative mortality < or = 15%). Calcium nitrate-extractable Zn in the lethal Zn smelter soil-amendment combinations was 11.5 to 18.2 mmol/kg, compared with the nonlethal LSB amended soil (0.62 mmol/kg). The Ca(NO3)2-extractable Zn-based median lethal concentration (LC50) of 6.33 mmol/kg previously developed in Zn-spiked artificial soils was applicable in the remediated smelter soils despite a 14-fold difference in total Zn concentration. Chelating ion-exchange membrane uptake among the soils was highly variable (mean CV = 39%) compared with the Ca(NO3)2-extraction (mean CV = 1.9%) and not well related to earthworm toxicity.  相似文献   

17.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

18.
The main aim of this study was to determine how the application of a mulch cover (a mixture of household biocompost and woodchips) onto heavy metal-polluted forest soil affects (i) long-term survival and growth of planted dwarf shrubs and tree seedlings and (ii) natural revegetation. Native woody plants (Pinus sylvestris, Betula pubescens, Empetrum nigrum, and Arctostaphylos uva-ursi) were planted in mulch pockets on mulch-covered and uncovered plots in summer 1996 in a highly polluted Scots pine stand in southwest Finland. Spreading a mulch layer on the soil surface was essential for the recolonization of natural vegetation and increased dwarf shrub survival, partly through protection against drought. Despite initial mortality, transplant establishment was relatively successful during the following 10 yr. Tree species had higher survival rates, but the dwarf shrubs covered a larger area of the soil surface during the experiment. Especially E. nigrum and P. sylvestris proved to be suitable for revegetating heavy metal-polluted and degraded forests. Natural recolonization of pioneer species (e.g., Epilobium angustifolium, Taraxacum coll., and grasses) and tree seedlings (P. sylvestris, Betula sp., and Salix sp.) was strongly enhanced on the mulched plots, whereas there was no natural vegetation on the untreated plots. These results indicate that a heavy metal-polluted site can be ecologically remediated without having to remove the soil. Household compost and woodchips are low-cost mulching materials that are suitable for restoring heavy metal-polluted soil.  相似文献   

19.
Contamination of heavy metals in fish and vegetables is regarded as a major crisis globally, with a large share in many developing countries. In Bogra District of Bangladesh, concentrations of six heavy metals, i.e., chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd) and lead (Pb), were evaluated in the most consumed vegetables and fish species. The sampling was conducted during February–March 2012 and August–September 2013. The levels of metals varied between different fish and vegetable species. Elevated concentrations of As, Cd and Pb were observed in vegetable species (Solanum tuberosum, Allium cepa and Daucus carota), and fish species (Anabas testudineus and Heteropneustes fossilis) were higher than the FAO/WHO permissible limits, indicating these three metals might pose risk from the consumption of these vegetable and fish species. The higher concentration of heavy metals in these vegetable species might be due to the higher uptake from soil and sediment ingestion behavior in fish species. Multivariate principal component analysis (PCA) showed significant anthropogenic contributions of Cr, Ni, Cu and Pb in samples as the PCA axis scores were correlated with scores of anthropogenic activities. Target hazard quotients showed that the intakes of Cu, As and Pb through vegetables and fish were higher than the recommended health standards, indicated non-carcinogenic risk. Therefore, intakes of these elements via fish and vegetables for Bangladeshi people are a matter of concern.  相似文献   

20.
Two pulp and paper industrial wastes, lime mud (LM) and recovery boiler ash (RB), have low moisture contents, low heavy metal contaminations and contain various carbonate compounds which contribute to a high pH. Metal finishing wastewater (MF-WW) has a low pH, high levels of TDS and high contaminations from Cr, Cu, Pb and Zn. The heavy metals from MF-WW were removed by sorption and precipitation mechanisms. LM gave better results in removing heavy metals from MF-WW than RB. At a reaction time of 45 min, the maximum removal efficiencies for Cr (93%) and Cu (99%) were obtained at 110 g L−1 of LM, but at 80 g L−1 for Pb (96%) and Zn (99%). Treatment with LM gives a higher sludge volume than with RB. However, the leachability of heavy metals from LM is lower. Leachability of heavy metals in the sediment for all selected treatment conditions is within government standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号