首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, species are driven to extinction at a high rate. To reduce this rate it is important to delineate suitable habitats for these species in such a way that these areas can be suggested as conservation areas. The use of habitat suitability models (HSMs) can be of great importance for the delineation of such areas. In this study MaxEnt, a presence-only modelling technique, is used to develop HSMs for 223 nematode species of the Southern Bight of the North Sea. However, it is essential that these models are beyond discussion and they should be checked for potential errors. In this study we focused on two categories (1) errors which can be attributed to the database such as preferential sampling and spatial autocorrelation and (2) errors induced by the modelling technique such as overfitting, In order to quantify these adverse effects thousands of nulls models were created. The effect of preferential sampling (i.e. some areas where visited more frequenty than others) was investigated by comparing model outcomes based from null models sampling the actual sampling stations and null models sampling the entire mapping area (Raes and ter Steege, 2007). Overfitting is exposed by a fivefold cross-validation and the influence of spatial autocorrelation is assessed by separating test and training sets in space. Our results clearly show that all these effects are present: preferential sampling has a strong effect on the selection of non-random species models. Crossvalidation seems to have less influence on the model selection and spatial autocorrelation is also strongly present. It is clear from this study that predefined thresholds are not readily applicable to all datasets and additional tests are needed in model selection.  相似文献   

2.
Abstract:  Databases on the distribution of species can be used to describe the geographic patterns of biodiversity. Nevertheless, they have limitations. We studied three of these limitations: (1) inadequacy of raw data to describe richness patterns due to sampling bias, (2) lack of survey effort assessment (and lack of exhaustiveness in compiling data about survey effort), and (3) lack of coverage of the geographic and environmental variations that affect the distribution of organisms. We used a biodiversity database (BIOTA-Canarias) to analyze richness data from a well-known group (seed plants) in an intensively surveyed area (Tenerife Island). Observed richness and survey effort were highly correlated. Species accumulation curves could not be used to determine survey effort because data digitalization was not exhaustive, so we identified well-sampled sites based on observed richness to sampling effort ratios. We also developed a predictive model based on the data from well-sampled sites and analyzed the origin of the geographic errors in the obtained extrapolation by means of a geographically constrained cross-validation. The spatial patterns of seed-plant species richness obtained from BIOTA-Canarias data were incomplete and biased. Therefore, some improvements are needed to use this database (and many others) in biodiversity studies. We propose a protocol that includes controls on data quality, improvements on data digitalization and survey design to improve data quality, and some alternative data analysis strategies that will provide a reliable picture of biodiversity patterns.  相似文献   

3.
Predictive distribution modelling of Berberis aristata DC, a rare threatened plant with high medicinal values has been done with an aim to understand its potential distribution zones in Indian Himalayan region. Bioclimatic and topographic variables were used to develop the distribution model with the help of three different algorithms viz. Genetic Algorithm for Rule-set Production (GARP), Bioclim and Maximum entropy (MaxEnt). Maximum entropy has predicted wider potential distribution (10.36%) compared to GARP (4.63%) and Bioclim (2.44%). Validation confirms that these outputs are comparable to the present distribution pattern of the B. aristata. This exercise highlights that this species favours Western Himalaya. However, GARP and MaxEnt's prediction of Eastern Himalayan states (i. e. Arunachal Pradesh, Nagaland and Manipur) are also identified as potential occurrence places require further exploration.  相似文献   

4.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   

5.
O. Defeo  M. Rueda 《Marine Biology》2002,140(6):1215-1225
We discuss methodological aspects directed to quantify the across-shore population structure and abundance of sandy beach macroinfauna. The reliability of estimates derived from design-based (stratified random sampling) and model-based (geostatistics, kriging) approaches is discussed. Our analysis also addresses potential biases arising from environmentally driven designs that consider a priori fixed strata for sampling macroinfauna, as opposed to species-driven sampling designs, in which the entire range of across-shore distribution is covered. Model-based approaches showed, spatially, highly autocorrelated and persistent structures in two intertidal populations of the Uruguayan coast: the isopod Excirolana armata and the yellow clam Mesodesma mactroides. Both populations presented zonation patterns that ranged from the base of the dunes to upper levels of the subtidal. The Gaussian model consistently explained the spatial distribution of species and population components (clam recruits and adults), with a minor contribution (Е%) of unresolved, small-scale variability. The consistent structure of spatial dependence in annual data strongly suggests an across-shore-structured process covering close to 35 m. Kriging predictions through cross-validation corroborated the appropriateness of the models fitted through variographic analysis, and the derived abundance estimates were very similar (maximum difference=7%) to those obtained from linear interpolation. Monthly analysis of E. armata data showed marked variations in its zonation and an unstable spatial structure according to the Gaussian model. The clear spatial structure resulting from species-driven sampling was not observed when data was truncated to simulate an environmentally driven sampling design. In this case, the linear semivariogram indicated a spatial gradient, suggesting that sampling was not performed at the appropriate spatial scale. Further, the cross-validation procedure was not significant, and both density and total abundance were underestimated. We conclude that: (1) geostatistics provides useful additional information about population structure and aids in direct abundance estimation; thus we suggest it as a powerful tool for further applications in the study of sandy beach macroinfauna; and that (2) environmentally driven sampling strategies fail to provide conclusive results about population structure and abundance, and should be avoided in studies of sandy beach populations. This is especially true for microtidal beaches, where unpredictable swash strength precludes a priori stratification through environmental reference points. The need to use adaptive sampling designs and avoid snapshot sampling is also stressed. Methodological implications for the detection of macroecological patterns in sandy beach macroinfauna are also discussed.  相似文献   

6.
Species distribution models (SDMs) are increasingly used in conservation and land-use planning as inputs to describe biodiversity patterns. These models can be built in different ways, and decisions about data preparation, selection of predictor variables, model fitting, and evaluation all alter the resulting predictions. Commonly, the true distribution of species is unknown and independent data to verify which SDM variant to choose are lacking. Such model uncertainty is of concern to planners. We analyzed how 11 routine decisions about model complexity, predictors, bias treatment, and setting thresholds for predicted values altered conservation priority patterns across 25 species. Models were created with MaxEnt and run through Zonation to determine the priority rank of sites. Although all SDM variants performed well (area under the curve >0.7), they produced spatially different predictions for species and different conservation priority solutions. Priorities were most strongly altered by decisions to not address bias or to apply binary thresholds to predicted values; on average 40% and 35%, respectively, of all grid cells received an opposite priority ranking. Forcing high model complexity altered conservation solutions less than forcing simplicity (14% and 24% of cells with opposite rank values, respectively). Use of fewer species records to build models or choosing alternative bias treatments had intermediate effects (25% and 23%, respectively). Depending on modeling choices, priority areas overlapped as little as 10–20% with the baseline solution, affecting top and bottom priorities differently. Our results demonstrate the extent of model-based uncertainty and quantify the relative impacts of SDM building decisions. When it is uncertain what the best SDM approach and conservation plan is, solving uncertainty or considering alterative options is most important for those decisions that change plans the most.  相似文献   

7.
Various methods exist to model a species’ niche and geographic distribution using environmental data for the study region and occurrence localities documenting the species’ presence (typically from museums and herbaria). In presence-only modelling, geographic sampling bias and small sample sizes represent challenges for many species. Overfitting to the bias and/or noise characteristic of such datasets can seriously compromise model generality and transferability, which are critical to many current applications - including studies of invasive species, the effects of climatic change, and niche evolution. Even when transferability is not necessary, applications to many areas, including conservation biology, macroecology, and zoonotic diseases, require models that are not overfit. We evaluated these issues using a maximum entropy approach (Maxent) for the shrew Cryptotis meridensis, which is endemic to the Cordillera de Mérida in Venezuela. To simulate strong sampling bias, we divided localities into two datasets: those from a portion of the species’ range that has seen high sampling effort (for model calibration) and those from other areas of the species’ range, where less sampling has occurred (for model evaluation). Before modelling, we assessed the climatic values of localities in the two datasets to determine whether any environmental bias accompanies the geographic bias. Then, to identify optimal levels of model complexity (and minimize overfitting), we made models and tuned model settings, comparing performance with that achieved using default settings. We randomly selected localities for model calibration (sets of 5, 10, 15, and 20 localities) and varied the level of model complexity considered (linear versus both linear and quadratic features) and two aspects of the strength of protection against overfitting (regularization). Environmental bias indeed corresponded to the geographic bias between datasets, with differences in median and observed range (minima and/or maxima) for some variables. Model performance varied greatly according to the level of regularization. Intermediate regularization consistently led to the best models, with decreased performance at low and generally at high regularization. Optimal levels of regularization differed between sample-size-dependent and sample-size-independent approaches, but both reached similar levels of maximal performance. In several cases, the optimal regularization value was different from (usually higher than) the default one. Models calibrated with both linear and quadratic features outperformed those made with just linear features. Results were remarkably consistent across the examined sample sizes. Models made with few and biased localities achieved high predictive ability when appropriate regularization was employed and optimal model complexity was identified. Species-specific tuning of model settings can have great benefits over the use of default settings.  相似文献   

8.
International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction.  相似文献   

9.
Abstract: Genebank collection databases can be used for ecogeographical studies under the assumption that the accessions are a geographically unbiased sample. We evaluated the representativeness of a collection of wild potatoes from Bolivia and defined and assessed four types of bias: species, species-area, hotspot, and infrastructure. Species bias is the sampling of some species more often than others. Species-area bias is a sampling that is disproportionate to the total area in which a species is found. Hotspot bias is the disproportionate sampling of areas with high levels of diversity. Infrastructure bias is the disproportionate sampling of areas near roads and towns. Each of these biases is present in the Bolivian wild potato collection. The infrastructure bias was strong: 60% of all wild potato accessions were collected within 2 km of a road, as opposed to 22%, if collections had been made randomly. This analysis can serve as a guide for future collecting trips. It can also provide baseline information for the application of genebank data in studies based on geographic information systems.  相似文献   

10.
The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of \(\text {NO}_{x}\) in the Los Angeles area during a 10 year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated \(R^2\) of approximately \(0.7\) at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.  相似文献   

11.
Reliable prediction of the effects of landscape change on species abundance is critical to land managers who must make frequent, rapid decisions with long-term consequences. However, due to inherent temporal and spatial variability in ecological systems, previous attempts to predict species abundance in novel locations and/or time frames have been largely unsuccessful. The Effective Area Model (EAM) uses change in habitat composition and geometry coupled with response of animals to habitat edges to predict change in species abundance at a landscape scale. Our research goals were to validate EAM abundance predictions in new locations and to develop a calibration framework that enables absolute abundance predictions in novel regions or time frames. For model validation, we compared the EAM to a null model excluding edge effects in terms of accurate prediction of species abundance. The EAM outperformed the null model for 83.3% of species (N=12) for which it was possible to discern a difference when considering 50 validation sites. Likewise, the EAM outperformed the null model when considering subsets of validation sites categorized on the basis of four variables (isolation, presence of water, region, and focal habitat). Additionally, we explored a framework for producing calibrated models to decrease prediction error given inherent temporal and spatial variability in abundance. We calibrated the EAM to new locations using linear regression between observed and predicted abundance with and without additional habitat covariates. We found that model adjustments for unexplained variability in time and space, as well as variability that can be explained by incorporating additional covariates, improved EAM predictions. Calibrated EAM abundance estimates with additional site-level variables explained a significant amount of variability (P < 0.05) in observed abundance for 17 of 20 species, with R2 values >25% for 12 species, >48% for six species, and >60% for four species when considering all predictive models. The calibration framework described in this paper can be used to predict absolute abundance in sites different from those in which data were collected if the target population of sites to which one would like to statistically infer is sampled in a probabilistic way.  相似文献   

12.
Data from an aerial line transect survey conducted off West Greenland during August–September 2007 were used to estimate the abundance of long-finned pilot whales (Globicephala melas), white-beaked dolphins (Lagenorhynchus albirostris) and harbour porpoises (Phocoena phocoena). The abundance of each species was estimated using mark-recapture distance sampling techniques to correct for perception bias, and correction factors for time spent at the surface were applied. The fully corrected abundance estimates were 8,133 long-finned pilot whales, 11,984 white-beaked dolphins and 33,271 harbour porpoises. Based on density surface modelling methods, a count model with a generalised additive model formulation was used to relate abundance to spatial variables. Response curves indicated that the preferred habitats were deep offshore areas in Midwest Greenland for pilot whales, deep water over steep seabed slopes in South Greenland for white-beaked dolphins and relatively shallow inshore waters in Midwest–South Greenland for harbour porpoises. The abundance estimates and spatial trends for the three species are the first obtained from Greenland.  相似文献   

13.
Detection patterns of coral reef fish were assessed from the meta-analysis of distance sampling surveys performed by visual census in New Caledonia and French Polynesia, from 1986 to 1999. From approximately 100,000 observations relating to 593 species, the frequency distributions of fish detection distances perpendicular to the transect line were compared according to species characteristics and sampling conditions. The shape and extension of these detection profiles varied markedly with fish size, shyness, and crypticity, indicating strong differences of detectability across species. Detection of very small and cryptic fish decreased strongly 1 m away from the line. Conversely, sightings of shy and large species were excessively low in the first meters due to diver avoidance prior to detection. The larger the fish, the greater the fleeing distance. Distance data underscore how inconsistent detectability biases across species and sites can affect the accuracy of visual censuses when assessing coral reef fish populations.  相似文献   

14.
Models that predict distribution are now widely used to understand the patterns and processes of plant and animal occurrence as well as to guide conservation and management of rare or threatened species. Application of these methods has led to corresponding studies evaluating the sensitivity of model performance to requisite data and other factors that may lead to imprecise or false inferences. We expand upon these works by providing a relative measure of the sensitivity of model parameters and prediction to common sources of error, bias, and variability. We used a one-at-a-time sample design and GPS location data for woodland caribou (Rangifer tarandus caribou) to assess one common species-distribution model: a resource selection function. Our measures of sensitivity included change in coefficient values, prediction success, and the area of mapped habitats following the systematic introduction of geographic error and bias in occurrence data, thematic misclassification of resource maps, and variation in model design. Results suggested that error, bias and model variation have a large impact on the direct interpretation of coefficients. Prediction success and definition of important habitats were less responsive to the perturbations we introduced to the baseline model. Model coefficients, prediction success, and area of ranked habitats were most sensitive to positional error in species locations followed by sampling bias, misclassification of resources, and variation in model design. We recommend that researchers report, and practitioners consider, levels of error and bias introduced to predictive species-distribution models. Formal sensitivity and uncertainty analyses are the most effective means for evaluating and focusing improvements on input data and considering the range of values possible from imperfect models.  相似文献   

15.
Ulrich W  Gotelli NJ 《Ecology》2010,91(11):3384-3397
The influence of negative species interactions has dominated much of the literature on community assembly rules. Patterns of negative covariation among species are typically documented through null model analyses of binary presence/absence matrices in which rows designate species, columns designate sites, and the matrix entries indicate the presence (1) or absence (0) of a particular species in a particular site. However, the outcome of species interactions ultimately depends on population-level processes. Therefore, patterns of species segregation and aggregation might be more clearly expressed in abundance matrices, in which the matrix entries indicate the abundance or density of a species in a particular site. We conducted a series of benchmark tests to evaluate the performance of 14 candidate null model algorithms and six covariation metrics that can be used with abundance matrices. We first created a series of random test matrices by sampling a metacommunity from a lognormal species abundance distribution. We also created a series of structured matrices by altering the random matrices to incorporate patterns of pairwise species segregation and aggregation. We next screened each algorithm-index combination with the random and structured matrices to determine which tests had low Type I error rates and good power for detecting segregated and aggregated species distributions. In our benchmark tests, the best-performing null model does not constrain species richness, but assigns individuals to matrix cells proportional to the observed row and column marginal distributions until, for each row and column, total abundances are reached. Using this null model algorithm with a set of four covariance metrics, we tested for patterns of species segregation and aggregation in a collection of 149 empirical abundance matrices and 36 interaction matrices collated from published papers and posted data sets. More than 80% of the matrices were significantly segregated, which reinforces a previous meta-analysis of presence/absence matrices. However, using two of the metrics we detected a significant pattern of aggregation for plants and for the interaction matrices (which include plant-pollinator data sets). These results suggest that abundance matrices, analyzed with an appropriate null model, may be a powerful tool for quantifying patterns of species segregation and aggregation.  相似文献   

16.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   

17.
When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long‐term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity.  相似文献   

18.
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent.  相似文献   

19.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

20.
Rarefaction estimates how many species are expected in a random sample of individuals from a larger collection and allows meaningful comparisons among collections of different sizes. It assumes random spatial dispersion. However, two common dispersion patterns, within-species clumping and segregation among species, can cause rarefaction to overestimate the species richness of a smaller continuous area. We use field studies and computer simulations to determine (1) how robust rarefaction is to nonrandom spatial dispersion and (2) whether simple measures of spatial autocorrelation can predict the bias in rarefaction estimates. Rarefaction does not estimate species richness accurately for many communities, especially at small sample sizes. Measures of spatial autocorrelation of the more abundant species do not reliably predict amount of bias. Survey sites should be standardized to equal-sized areas before sampling. When sites are of equal area but differ in number of individuals sampled, rarefaction can standardize collections. When communities are sampled from different-sized areas, the mean and confidence intervals of species accumulation curves allow more meaningful comparisons among sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Daniel SimberloffEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号