首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family of tiger beetles (Cicindelidae) is an appropriate indicator taxon for determining regional patterns of biodiversity because (1) its taxonomy is stabilized; (2) its biology and general life history are well understood, (3) individuals are readily observed and manipulated in the field, (4) the family occurs world-wide and in a broad range of habitat types; (5) each species tends to be specialized within a narrow habitat; (6) patterns of species richness are highly correlated with those of other vertebrate and invertebrate taxa; and (7) the taxon includes species of potential economic importance. Logistical advantages provide some of the strongest arguments for selecting tiger beetles as an appropriate indicator taxon. Species numbers of tiger beetles are relatively well known for 129 countries. Eight countries alone account for more than half the world total of 2028 known species. Species numbers are also indicated for eleven biogeographical zones of the world. For gridded squares across North America, the Indian subcontinent, and Australia, species richness of tiger beetles, birds, and butterflies shows significant positive correlations. However, tiger beetle species numbers can be reliably determined within fifty hours on a single site, compared to months or years for birds or butterflies, and the advantage of using tiger beetles in conservation biology is evident  相似文献   

2.
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human‐dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long‐term conservation of tigers requires that the species be able to meet some of its life‐history needs beyond the boundaries of small protected areas and within the working landscape, including multiple‐use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km2 Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166‐km2 cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell‐scale occupancy and segment‐scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected‐area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple‐use forests. Restrictions on human‐use in high‐quality tiger habitat in multiple‐use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.  相似文献   

3.
New ecosystem management policies at Eglin Air Force Base, Florida, emphasize the need for public education and involvement in the changing focus of natural resource practices. To collect baseline information for ecosystem management, we measured and compared the knowledge, attitudes, and interests of critical Eglin audiences: recreational users and neighboring citizens. Factor analysis of surveys of 700 permitted recreational users and 1000 neighboring citizens revealed four content areas for measuring knowledge and attitudes: (1) native and endangered species, (2) fire ecology, (3) forest resources, and (4) ecosystem management. Overall, both audiences lacked basic ecological knowledge and held neutral to slightly positive attitudes toward the key content areas. Recreational users were significantly more knowledgeable than general citizens about native and endangered species, fire ecology, and forests. However, citizens held significantly more positive attitudes toward native and endangered species conservation and ecosystem management concepts. Eglin's consumptive recreationists (hunters and anglers) held the most negative views. Sociodemographic information from the surveys suggest that the recreational users and neighboring citizens are a stable, educable population that would respond positively to programs aimed at improving knowledge of and attitudes toward ecosystem management goals at Eglin.  相似文献   

4.
Abstract:  Wilderness areas are protected and valued in part for recreation; recreational use, however, can negatively impact these areas. In particular, recreational use can facilitate transport of non-native propagules and create open sites for establishment of non-native species. We examined the role of recreational portage trails in the introduction and establishment of non-native plants into the Boundary Waters Canoe Area Wilderness of northern Minnesota (U.S.A.). On 20 portages, we sampled non-native plant richness and cover at four distances (0, 10, 25, and 50 m) from trails. Non-native richness and cover were not related to distance from wilderness entry point. Non-native richness and cover were, however, negatively related to distance from trails. All six non-native species we observed were either directly on or within 1 m of trails. These results suggest that recreational trails act as corridors facilitating invasions of non-native plants into wilderness areas. It remains unclear, however, whether these effects are caused by dispersal of propagules, creation of bare ground, or changes in the native plant community.  相似文献   

5.
Diagnosing Units of Conservation Management   总被引:15,自引:0,他引:15  
Species-oriented conservation programs attempt to analyze and maintain intra-specific variation in order to maximally preserve biological diversity. The "evolutionarily significant unit" has become an operational term for a group of organisms that should be the minimial unit for conservation management. No generally accepted definition for this term exists that would be the basis for the evaluation of these units in practical conservation situations. Currently, taxonomic decisions in species conservation are mostly based on the biological species concept. But the universal application of criteria of reproductive isolation or phenetic similarity to delimit conservation units is problematical. We favor a definition for evolutionarily significant units based on patterns of variation. In the theoretical framework of the phylogenetic species concept, conservation units are delimited by characters that diagnose clusters of individuals or populations to the exclusion of other such clusters. Characters are used for cladistic analysis to infer hypotheses of the phylogenetic relationships of individuals, and differentiated populations are diagnosed using population aggregation analysis. Characters can be based on genetic, morphological, ecological, or behavioral information, provided they are inferred to be heritable. The use of cladistics and population aggregation analysis has the potential to make the evaluation of evoluntionarily significant units objective and testable, an important consideration in politically controversial cases. Our cladistic approach is demonstrated by the evaluation of potential conservation units in the endangered tiger beetles Cicindela dorsalis and C. puritana .  相似文献   

6.
Coastal environments are popular sites for tourism and faced with an increasing recreational demand. Most of European coastal areas attract numerous visitors annually. In recreation research this management problem can be described in terms of carrying capacity which expresses the ability of a site or region to absorb recreational use without deterioration of natural resources and the quality of the visitor experience. As social aspects of recreation in Europe still have received little attention, the purpose of this study is to examine the applicability of the concept of social carrying capacity in a German coastal national park. The article addresses if the relationship between perceived visitor encounters, crowding perception and visitor characteristics is applicable by using data from an on-site survey (N?=?509) of visitors conducted on Hamburger Hallig, Germany. It examines whether effects of overcrowding are measurable on a popular daytrip destination with established approaches. Results demonstrate that visitors to Hamburger Hallig are characterised by a heterogeneous visitor composition of local residents and domestic tourists with different motivations and who mainly visited the area for hiking or cycling. Study findings show that valuation for reported encounters and perceived crowding differed substantially among origin of visitors and sampling dates. All in all, respondents report a high level of encounter with others and in contrast a very low level of perceived crowding.  相似文献   

7.
Abstract:  For more than 10 years, ecologists have been discussing the concept of ecosystem engineering (i.e., nontrophic interactions of an organism that alters the physical state of its environment and affects other species). In conservation biology, the functional role of species is of interest because persistence of some species may be necessary for maintaining an entire assemblage with many threatened species. The great capricorn ( Cerambyx cerdo ), an endangered beetle listed in the European Union's Habitats Directive, has suffered a dramatic decline in the number of populations and in population sizes in Central Europe over the last century. The damage caused by C. cerdo larvae on sound oak trees has considerable effects on the physiological characteristics of these trees. We investigated the impacts of these effects on the species richness and heterogeneity of the saproxylic beetle assemblage on oaks. We compared the catches made with flight interception traps on 10 oaks colonized and 10 oaks uncolonized by C. cerdo in a study area in Lower Saxony (Germany). Our results revealed a significantly more species-rich assemblage on the trees colonized by C. cerdo . Colonized trees also harbored more red-listed beetle species. Our results suggest that an endangered beetle species can alter its own habitat to create favorable habitat conditions for other threatened beetle species. Efforts to preserve C. cerdo therefore have a positive effect on an entire assemblage of insects, including other highly endangered species. On the basis of the impact C. cerdo seems to have on the saproxylic beetle assemblage, reintroductions might be considered in regions where the species has become extinct.  相似文献   

8.
We describe conservation built on local expertise such that it constitutes a hybrid form of traditional and bureaucratic knowledge. Researchers regularly ask how local knowledge might be applied to programs linked to protected areas. By examining the production of conservation knowledge in southern Mexico, we assert local expertise is already central to conservation. However, bureaucratic norms and social identity differences between lay experts and conservation practitioners prevent the public valuing of traditional knowledge. We make this point by contrasting 2 examples. The first is a master's thesis survey of local experts regarding the biology of the King Vulture (Sarcoramphus papa) in which data collection took place in communities adjacent to the Calakmul Biosphere Reserve. The second is a workshop sponsored by the same reserve that instructed farmers on how to monitor endangered species, including the King Vulture. In both examples, conservation knowledge would not have existed without traditional knowledge. In both examples, this traditional knowledge is absent from scientific reporting. On the basis of these findings, we suggest conservation outcomes may be improved by recognizing the knowledge contributions local experts already make to conservation programming. Mejorando los Resultados de la Conservación con la Percepción de Expertos y Burócratas Locales Haenn et al.  相似文献   

9.
The aims of this study are to review the current situation of the Israeli Mediterranean coastal sand dunes, to examine the causes for this situation, and to propose options for future conservation and management of the protected dune areas based on ecological, environmental, landscape and recreational demands and interests. The coastal dunes of Israel are characterized by diverse plant communities, with 173 plant species occurring on sand (8.2% of the total flora of Israel) including many endemic species (26% of all endemic species in Israel). Most of the species are annuals. The importance of the coastal strip as a centre of floral and faunal speciation is also manifested in the existing sand-bound animals. However, many species are rare. This is mainly due to the extensive industrial and urban development along the coastal plain and the direct and indirect destruction of the remaining open dune areas by tourism, recreation and sand mining. Only ca. 17% of the Israeli coastal dunes are still of good or reasonable ecological value, while < 5% of this area has been designated as protected area. Management policies differ from place to place and depend on local objectives. These objectives derive mainly from the knowledge and data that exist for each location, and its statutory status. Since 1995 several projects, which aim to develop integrated management tools for nature conservation and recreation uses for all coastal sand dunes in Israel have been conducted. These projects are summarized in the present paper.  相似文献   

10.
The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large‐sized taxa were under decline, whereas small‐sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data‐deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species‐by‐species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. Predección y Definición de Prioridades de Conservación para Mamíferos de Bolivia con Base en Correlaciones Biológicas del Riesgo de Declinación  相似文献   

11.
In regions where snowfall historically has been a defining seasonal characteristic of the landscape, warming winters have reduced the depth, duration, and extent of snowpack. However, most management and conservation has focused on how aboveground wildlife will be affected by altered snow conditions, even though the majority of species that persist through the winter do so under the snowpack in a thermally stable refugium: the subnivium. Shortened winters, forest management practices, and winter recreation can alter subnivium conditions by increasing snow compaction and compromising thermal stability at the soil–snow interface. To help slow the loss of the subnivium in the face of rapidly changing winter conditions, we suggest managers adopt regional conservation plans for identifying threatened snow‐covered environments; measure and predict the effects land cover and habitat management has on local subnivium conditions; and control the timing and distribution of activities that disturb and compact snow cover (e.g., silvicultural practices, snow recreation, and road and trail maintenance). As a case study, we developed a spatially explicit model of subnivium presence in a working landscape of the Chequamegon National Forest, Wisconsin. We identified landscapes where winter recreation and management practices could threaten potentially important areas for subnivium persistence. Similar modeling approaches could inform management decisions related to subnivium conservation. Current climate projections predict that snow seasons will change rapidly in many regions, and as result, we advocate for the immediate recognition, conservation, and management of the subnivium and its dependent species.  相似文献   

12.
13.
Cataloging biodiversity is critical to conservation efforts because accurate taxonomy is often a precondition for protection under laws designed for species conservation, such as the U.S. Endangered Species Act (ESA). Traditional nomenclatural codes governing the taxonomic process have recently come under scrutiny because taxon names are more closely linked to hierarchical ranks than to the taxa themselves. A new approach to naming biological groups, called phylogenetic nomenclature (PN), explicitly names taxa by defining their names in terms of ancestry and descent. PN has the potential to increase nomenclatural stability and decrease confusion induced by the rank‐based codes. But proponents of PN have struggled with whether species and infraspecific taxa should be governed by the same rules as other taxa or should have special rules. Some proponents advocate the wholesale abandonment of rank labels (including species); this could have consequences for the implementation of taxon‐based conservation legislation. I examined the principles of PN as embodied in the PhyloCode (an alternative to traditional rank‐based nomenclature that names biological groups based on the results of phylogenetic analyses and does not associate taxa with ranks) and assessed how this novel approach to naming taxa might affect the implementation of species‐based legislation by providing a case study of the ESA. The latest version of the PhyloCode relies on the traditional rank‐based codes to name species and infraspecific taxa; thus, little will change regarding the main targets of the ESA because they will retain rank labels. For this reason, and because knowledge of evolutionary relationships is of greater importance than nomenclatural procedures for initial protection of endangered taxa under the ESA, I conclude that PN under the PhyloCode will have little impact on implementation of the ESA. Impactos de la Nomenclatura Filogenética sobre la Eficiencia del Acta Estadunidense para las Especies en Peligro  相似文献   

14.
With the aim of wood production with negligible negative effects on biodiversity and ecosystem processes, a silvicultural practice of selective logging with natural regeneration has been implemented in European beech forests (Fagus sylvatica) during the last decades. Despite this near‐to‐nature strategy, species richness of various taxa is lower in these forests than in unmanaged forests. To develop guidelines to minimize the fundamental weaknesses in the current practice, we linked functional traits of saproxylic beetle species to ecosystem characteristics. We used continental‐scale data from 8 European countries and regional‐scale data from a large forest in southern Germany and forest‐stand variables that represented a gradient of intensity of forest use to evaluate the effect of current near‐to‐nature management strategies on the functional diversity of saproxylic beetles. Forest‐stand variables did not have a statistically significant effect on overall functional diversity, but they did significantly affect community mean and diversity of single functional traits. As the amount of dead wood increased the composition of assemblages shifted toward dominance of larger species and species preferring dead wood of large diameter and in advanced stages of decay. The mean amount of dead wood across plots in which most species occurred was from 20 to 60 m3/ha. Species occurring in plots with mean dead wood >60 m3/ha were consistently those inhabiting dead wood of large diameter and in advanced stages of decay. On the basis of our results, to make current wood‐production practices in beech forests throughout Europe more conservation oriented (i.e., promoting biodiversity and ecosystem functioning), we recommend increasing the amount of dead wood to >20 m3/ha; not removing dead wood of large diameter (50 cm) and allowing more dead wood in advanced stages of decomposition to develop; and designating strict forest reserves, with their exceptionally high amounts of dead wood, that would serve as refuges for and sources of saproxylic habitat specialists. Efectos Actuales del Manejo Casi Natural de Bosques sobre la Composición de Atributos Funcionales de Escarabajos Saproxílicos en Bosques de Haya  相似文献   

15.
Summary. Host selection in tree-killing bark beetles (Coleoptera: Scolytidae) is mediated by a complex of semiochemical cues. Using gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses, we conducted a comparative study of the electrophysiological responses of four species of tree-killing bark beetles, the Douglas-fir beetle, Dendroctonus pseudotsugae, Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis Kirby, and the western balsam bark beetle, Dryocoetes confusus Swaine, to volatiles captured by aeration of 1) bole and foliage of four sympatric species of conifers, Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, lodgepole pine, Pinus contorta var. latifolia Engelm., interior spruce, Picea engelmannii x glauca, and interior fir, Abies lasiocarpa x bifolia, and 2) con- and heterospecific beetles at three stages of attack. We identified 13 monoterpenes in the conifers and nine compounds in the volatiles of beetles that elicited antennal responses. There was no qualitative difference in the terpene constitution of the four species of conifers and very little difference across beetle species in their antennal response to compounds from conifers or beetles. The lack of species-specific major or minor components in conifers suggests that beetles would need to detect differences in the ratios of different compounds in conifers to discriminate among them. Attraction to hosts and avoidance of nonhost conifers may be accentuated by perception of compounds emitted by con- and heterospecific beetles, respectively. The 22 compounds identified are candidate semiochemicals with potential behavioural roles in host location and discrimination.  相似文献   

16.
Every year, millions of migratory shorebirds fly through the East Asian–Australasian Flyway between their arctic breeding grounds and Australasia. This flyway includes numerous coastal wetlands in Asia and the Pacific that are used as stopover sites where birds rest and feed. Loss of a few important stopover sites through sea‐level rise (SLR) could cause sudden population declines. We formulated and solved mathematically the problem of how to identify the most important stopover sites to minimize losses of bird populations across flyways by conserving land that facilitates upshore shifts of tidal flats in response to SLR. To guide conservation investment that minimizes losses of migratory bird populations during migration, we developed a spatially explicit flyway model coupled with a maximum flow algorithm. Migratory routes of 10 shorebird taxa were modeled in a graph theoretic framework by representing clusters of important wetlands as nodes and the number of birds flying between 2 nodes as edges. We also evaluated several resource allocation algorithms that required only partial information on flyway connectivity (node strategy, based on the impacts of SLR at nodes; habitat strategy, based on habitat change at sites; population strategy, based on population change at sites; and random investment). The resource allocation algorithms based on flyway information performed on average 15% better than simpler allocations based on patterns of habitat loss or local bird counts. The Yellow Sea region stood out as the most important priority for effective conservation of migratory shorebirds, but investment in this area alone will not ensure the persistence of species across the flyway. The spatial distribution of conservation investments differed enormously according to the severity of SLR and whether information about flyway connectivity was used to guide the prioritizations. With the rapid ongoing loss of coastal wetlands globally, our method provides insight into efficient conservation planning for migratory species. Gestión Óptima de una Ruta Migratoria de Múltiples Especies de Aves Costeras Sometida a Incremento del Nivel del Mar  相似文献   

17.
Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site‐selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. Predicción y Mapeo del Hábitat Potencial de Descanso de la Grulla Americana para Guiar la Selección de Sitios para Proyectos de Energía Eólica.  相似文献   

18.
Abstract:  The contemporary southwestern United States is characterized by fire-adapted ecosystems; large numbers of federally listed threatened and endangered species; a patchwork of federal, state, and private landownership; and a long history of livestock grazing as the predominant land use. I compared eight sites in southern Arizona and New Mexico to assess the interacting effects of these characteristics on conservation practices and outcomes. There was widespread interest and private-sector leadership in restoring fire to southwestern rangelands, and there is a shortage of predictive scientific knowledge about the effects of fire and livestock grazing on threatened and endangered species. It was easier to restore fire to lands that were either privately owned or not grazed, in part because of obstacles created by threatened and endangered species on grazed public lands. Collaborative management facilitated conservation practices and outcomes, and periodic removal of livestock may be necessary for conservation, but permanent livestock exclusion may be counterproductive because of interactions with land-use and landownership patterns.  相似文献   

19.
Summary. Several species of the flea beetles genus Longitarsus are able to sequester pyrrolizidine alkaloids (PAs) from their host plants. In five Longitarsus species we compare the concentration of PAs present in their host plants belonging to the Asteraceae or Boraginaceae with those found in the beetles. To get an estimate of the intrapopulation variability, three samples of five beetles each and five individual plants were analyzed for each comparison. A strong intrapopulation variability could be detected both among plant and beetle samples. The total concentration found in the beetles varied strongly between species. The local host plant and its phenology influence the concentrations present in the beetles as evidenced in comparisons of a single beetle species from two different hosts and of one beetle species collected at the same site at different times of the year. In addition, different beetle species apparently vary in their capacity to sequester the alkaloids, at the lowest extreme the mean PA concentration in the beetles (0.034 μg PA/mg dry weight) was 1/30 of the mean concentration found in the plant leaves (L. aeruginosus from Eupatorium cannabinum), at the highest extreme (2.098 μg PA/mg dw) the concentration in the beetles was a 1000 fold higher than in the plant leaves (L. nasturtii from Symphytum officinale). The highest mean concentration found in the beetles was 3.446 μg/mg dw (L. exoletus from Cynoglossum officinale). The absolute concentrations found in the beetles are comparable to other insects which have been shown to be effectively defended against their potential predators. Received 22 June 1999; accepted 25 August 1999  相似文献   

20.
Foragers of several species of stingless bees deposit pheromone spots in the vegetation to guide recruited nestmates to a rich food source. Recent studies have shown that Trigona and Scaptotrigona workers secrete these pheromones from their labial glands. An earlier report stated that species within the genus Geotrigona use citral from their mandibular glands for scent marking. Since convincing experimental proof for this conjecture is lacking, we studied the glandular origin of the trail pheromone of Geotrigona mombuca. In field bioassays, newly recruited bees were diverted by artificial scent trails that branched off from the natural scent trail deposited by their nestmates only when they were baited with extracts from the foragers’ labial glands. Compounds extracted from the mandibular glands, however, did not release trail following behavior. This demonstrates that the trail pheromone of G. mombuca is produced in the labial glands, as in Trigona and Scaptotrigona. Furthermore, in chemical analyses citral was identified exclusively in the foragers’ mandibular glands, which disproves its supposed role as a trail pheromone. The labial glands contained a series of terpene- and wax type esters, with farnesyl butanoate as major constituent. We, therefore, postulate that the trail pheromone of G. mombuca is composed of a blend of esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号