首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the criteria used by the International Union for Conservation of Nature (IUCN) to assess threat status is the rate of decline in abundance over 3 generations or 10 years, whichever is longer. The traditional method for calculating generation length (T) uses age‐specific survival and fecundity, but these data are rarely available. Consequently, proxies that require less information are often used, which introduces potential biases. The IUCN recommends 2 proxies based on adult mortality rate, = α + 1/d, and reproductive life span, = α + z*RL, where α is age at first reproduction, d is adult mortality rate, RL is reproductive life span, and z is a coefficient derived from data for comparable species. We used published life tables for 78 animal and plant populations to evaluate precision and bias of these proxies by comparing and with true generation length. Mean error rates in estimating T were 31% for and 20% for , but error rates for were 16% when we subtracted 1 year ( ), as suggested by theory; also provided largely unbiased estimates regardless of the true generation length. Performance of depends on compilation of detailed data for comparable species, but our results suggest taxonomy is not a reliable indicator of comparability. All 3 proxies depend heavily on a reliable estimate of age at first reproduction, as we illustrated with 2 test species. The relatively large mean errors for all proxies emphasized the importance of collecting the detailed life‐history information necessary to calculate true generation length. Unfortunately, publication of such data is less common than it was decades ago. We identified generic patterns of age‐specific change in vital rates that can be used to predict expected patterns of bias from applying .  相似文献   

2.
Effective population size, a central concept in conservation biology, is now routinely estimated from genetic surveys and can also be theoretically predicted from demographic, life‐history, and mating‐system data. By evaluating the consistency of theoretical predictions with empirically estimated effective size, insights can be gained regarding life‐history characteristics and the relative impact of different life‐history traits on genetic drift. These insights can be used to design and inform management strategies aimed at increasing effective population size. We demonstrated this approach by addressing the conservation of a reintroduced population of Asiatic wild ass (Equus hemionus). We estimated the variance effective size (Nev) from genetic data () and formulated predictions for the impacts on Nev of demography, polygyny, female variance in lifetime reproductive success (RS), and heritability of female RS. By contrasting the genetic estimation with theoretical predictions, we found that polygyny was the strongest factor affecting genetic drift because only when accounting for polygyny were predictions consistent with the genetically measured Nev. The comparison of effective‐size estimation and predictions indicated that 10.6% of the males mated per generation when heritability of female RS was unaccounted for (polygyny responsible for 81% decrease in Nev) and 19.5% mated when female RS was accounted for (polygyny responsible for 67% decrease in Nev). Heritability of female RS also affected Nev; (heritability responsible for 41% decrease in Nev). The low effective size is of concern, and we suggest that management actions focus on factors identified as strongly affecting , namely, increasing the availability of artificial water sources to increase number of dominant males contributing to the gene pool. This approach, evaluating life‐history hypotheses in light of their impact on effective population size, and contrasting predictions with genetic measurements, is a general, applicable strategy that can be used to inform conservation practice.  相似文献   

3.
Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single‐season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter–area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m2. Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter–area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland ( = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the foreseeable future. Patrones de Ocupación de Poblaciones Regionalmente Declinantes de Gorriones de Pastizales en un Paisaje Boscoso de Pennsylvania  相似文献   

4.
Assisted migration is a controversial conservation measure that aims to protect threatened species by moving part of their population outside its natural range. Although this could save species from extinction, it also introduces a range of risks. The magnitude of the threat to recipient ecosystems has not been investigated quantitatively, despite being the most common criticism leveled at the action. We used an ensemble modeling framework to estimate the risks of assisted migration to existing species within ecosystems. With this approach, we calculated the consequences of an assisted migration project across a very large combination of translocated species and recipient ecosystems. We predicted the probability of a successful assisted migration and the number of local extinctions would result from establishment of the translocated species. Using an ensemble of simulated 15-species recipient ecosystems, we estimated that translocated species will successfully establish in 83% of cases if introduced to stable, high-quality habitats. However, assisted migration projects were estimated to cause an average of 0.6 extinctions and 5% of successful translocations triggered 4 or more local extinctions. Quantifying the impacts to species within recipient ecosystems is critical to help managers weigh the benefits and negative consequences of assisted migration.  相似文献   

5.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   

6.
Abstract: A sea cage, sometimes referred to as a net pen, is an enclosure designed to prevent farm fish from escaping and to protect them from large predators, while allowing a free flow of water through the cage to carry away waste. Farm fish thus share water with wild fish, which enables transmission of parasites, such as sea lice, from wild to farm and farm to wild fishes. Sea lice epidemics, together with recently documented population‐level declines of wild salmon in areas of sea‐cage farming, are a reminder that sea‐cage aquaculture is fundamentally different from terrestrial animal culture. The difference is that sea cages protect farm fish from the usual pathogen‐control mechanisms of nature, such as predators, but not from the pathogens themselves. A sea cage thus becomes an unintended pathogen factory. Basic physical theory explains why sea‐cage aquaculture causes sea lice on sympatric wild fish to increase and why increased lice burdens cause wild fish to decline, with extirpation as a real possibility. Theory is important to this issue because slow declines of wild fish can be difficult to detect amid large fluctuations from other causes. The important theoretical concepts are equilibrium, host‐density effect, reservoir‐host effect, and critical stocking level of farmed fish (stocking level at which lice proliferate on farm fish even if wild fish are not present to infect them). I explored these concepts and their implications without mathematics through examples from salmon farming. I also considered whether the lice‐control techniques used by sea‐cage farmers (medication and shortened grow‐out times) are capable of protecting wild fish. Elementary probability showed that (where W is the abundance of wild fish, W* is the prefarm abundance, F is the abundance of farm fish, and is the ratio of lice per farm fish to lice per wild fish). Declines of wild fish can be reduced by short growing cycles for farm fish, medicating farm fish, and keeping farm stocking levels low. Declines can be avoided only by ensuring that wild fish do not share water with farmed fish, either by locating sea cages very far from wild fish or through the use of closed‐containment aquaculture systems. These principles are likely to govern any aquaculture system where cage‐protected farm hosts and sympatric wild hosts have a common parasite with a direct life cycle.  相似文献   

7.
Abstract: Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500‐ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow‐pocket aspen plots. On each 1.5‐ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150‐m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow‐pocket aspen produced extensive regeneration of new shoots ( stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium‐diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow‐pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow‐pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow‐pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic‐level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.  相似文献   

8.
Abstract: The Hawaiian monk seal (Monachus schauinslandi) is one of the most critically endangered marine mammals. Less than 1200 individuals remain, and the species is declining at a rate of approximately 4% per year as a result of juvenile starvation, shark predation, and entanglement in marine debris. Some of these problems may be alleviated by translocation; however, if island breeding aggregates are effectively isolated subpopulations, moving individuals may disrupt local adaptations. In these circumstances, managers must balance the pragmatic need of increasing survival with theoretical concerns about genetic viability. To assess range‐wide population structure of the Hawaiian monk seal, we examined an unprecedented, near‐complete genetic inventory of the species (n =1897 seals, sampled over 14 years) at 18 microsatellite loci. Genetic variation was not spatially partitioned (w=?0.03, p = 1.0), and a Bayesian clustering method provided evidence of one panmictic population (K =1). Pairwise FST comparisons (among 7 island aggregates over 14 annual cohorts) did not reveal temporally stable, spatial reproductive isolation. Our results coupled with long‐term tag‐resight data confirm seal movement and gene flow throughout the Hawaiian Archipelago. Thus, human‐mediated translocation of seals among locations is not likely to result in genetic incompatibilities.  相似文献   

9.
In this research, supercritical carbon dioxide extraction (SFE) showed better extraction effect when compared with Solid- liquid extraction (SLE), Soxhlet extraction (SE) and Ultrasonic extraction (UE), not only in the rate but also the time. The comparison among these three extraction modifiers, including acetone, ethanol and methanol demonstrated that ethanol was preferred to SFE due to its high extraction effect and low toxicology. In addition, parameter of SFE, influence of temperature and pressure were investigated, and the best extraction effect was achieved at the optima conditions, temperature of 40°C and the pressure of 35 MPa. Thus, SFE is a highly effective method for flavonols extraction, requiring minimum energy and producing non-toxic byproduct. SFE-GC system is applied for the evaluation on flavonols that plays a key role in plant resistance to heavy metal, with its content and synthetase gene expression significantly increasing in plant when threatened by heavy metal. Besides, results indicated that flavonols can improve plant resistance to oxidative stress by quenching the redundant ROS in matrix.
  相似文献   

10.
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.
  相似文献   

11.
Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.
  相似文献   

12.
Inflow and infiltration (I/I) are serious problems in hybrid sewerage systems. Limited sewerage information impedes the estimation accuracy of I/I for each catchment. A new method dealing with I/I of a large-scale hybrid sewerage system with limited infrastructure facility data is proposed in this study. The catchment of representative pump stations was adopted to demonstrate the homological catchments that have similar wastewater fluctuation characteristics. Homological catchments were clustered using the self-organizing map (SOM) analysis based on long-term daily flow records of 50 pumping stations. An assessment index was applied to describe the I/I and overflow risk in the catchment based on the hourly wastewater quality and quantity data of representative pump stations. The potential operational strategy of homological catchments was determined by the assessment index of representative pump stations. The simulation results of the potential operational strategy indicated that the optimized operation strategy could reduce surcharge events and significantly improve the quality of wastewater treatment plant effluent.
  相似文献   

13.
In addition to maximizing economic benefits, reverse supply chains should further seek to maximize social benefits by increasing the quantity of waste electrical and electronic equipment (WEEE). The paper investigates cooperative models with different parties in a three-echelon reverse supply chain for WEEE consisting of a single collector, a single remanufacturer, and two retailers based on complete information. In addition, the optimal decisions of four cooperative models and the effect of the market demand of remanufactured WEEE products and the market share of two retailers on the optimal decisions are discussed. The results indicate that optimal total channel profit and recycle quantity in a reverse supply chain are maximized in a centralized model. The optimal total channel profit and recycle quantity increase with an increase in the market demand of remanufactured WEEE products. The three-echelon reverse supply chain consisting of duopolistic retailers maximizes total channel profit and recycle quantity in a reverse supply chain for WEEE.
  相似文献   

14.
Bdellovibrio-and-like organisms (BALOs) are a group of ubiquitous and obligate predatory bacteria and commonly used as biocontrol agents. In this study, an efficient, environmental-friendly, and convenient BALOs encouraged municipal waste sludge biolysis pretreatment technique was developed and investigated for dewaterability enhancement of excess waste sludge. The indigenous predatory BALOs were successfully isolated from the sludge for biolysis treatment. Without any chemical addition or pH adjustment, the sludge specific resistance (SRF) and capillary suction time (CST) were significantly reduced by as high as 53.4% and 23.8%, respectively within 24 h’s treatment, which would further be lowered with the increase of BALOs input dosage. However, the continuous extension of reaction time would worsen the sludge dewaterability. The decreases of SRF and CST accompanied with the increases of sludge disintegration degree and soluble chemical oxygen demand, nitrogen, and phosphorus concentrations all emphasized the contributions of BALOs’ predation activities to sludge disturbance, cell lysis, and consequently the release of sludge intracellular water to finally effectively improve the sludge dewaterability and disposal efficiency.
  相似文献   

15.
Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.
  相似文献   

16.
Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a fuel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is found to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads for 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.
  相似文献   

17.
Viable But Nonculturable (VBNC) Bacteria, which represent a unique population of microorganisms in drinking water systems, have become a potential threat to human health. Current studies on VBNC cells usually fail to obtain pure VBNC state bacteria, which may lead to inaccurate results. We therefore introduce a novel method of VBNC cell separation and purification in this paper. PAH-coated magnetic nanoparticles (MNPs) were synthesized and found to be capable of capturing and releasing bacterial cells with high efficiency. With the aid of an additional incubation step, VBNC cells were easily isolated and purified from normal bacteria using functional MNPs. Our method represents a new technique that can be utilized in studies of VBNCs.
  相似文献   

18.
Nitrous oxide (N2O), a potent greenhouse gas, is emitted during nitrogen removal in wastewater treatment, significantly contributing to greenhouse effect. Nitrogen removal generally involves nitrification and denitrification catalyzed by specific enzymes. N2O production and consumption vary considerably in response to specific enzyme-catalyzed nitrogen imbalances, but the mechanisms are not yet completely understood. Studying the regulation of related enzymes’ activity is essential to minimize N2O emissions during wastewater treatment. This paper aims to review the poorly understood related enzymes that most commonly involved in producing and consuming N2O in terms of their nature, structure and catalytic mechanisms. The pathways of N2O emission during wastewater treatment are briefly introduced. The key environmental factors influencing N2O emission through regulatory enzymes are summarized and the enzyme-based mechanisms are revealed. Several enzymebased techniques for mitigating N2O emissions directly or indirectly are proposed. Finally, areas for further research on N2O release during wastewater treatment are discussed.
  相似文献   

19.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   

20.
The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号