首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
         下载免费PDF全文
As an environmental pollutant,ambient fine particulate matter (PM2.5) was linked to cardiovascular diseases.The molecular mechanisms underlying PM2.5-induced extrapulmonary disease has not been elucidated clearly.In this study the ambient PM2.5exposure mice model we established was to explore adverse effects of vessel and potential mechanisms.Long-term PM2.5exposure caused reduced lung function and vascular stiffness in mice.And chronic PM2.5  相似文献   

2.
    
This review aimed to systematically summarize the epidemiological literature on the cardiorespiratory effects of PM2.5 published during the 13th Five-Year Plan period (2016–2020) in China. Original articles published between January 1, 2016 and June 30, 2021 were searched in PubMed, Web of Science, the China National Knowledge Internet Database and Wanfang Database. Random- or fixed-effects models were used to pool effect estimates where appropriate. Of 8558 records identified, 145 met the full eligibility criteria. A 10 µg/m³ increase in short-term PM2.5 exposure was significantly associated with increases of 0.70%, 0.86%, 0.38% and 0.96% in cardiovascular mortality, respiratory mortality, cardiovascular morbidity, and respiratory morbidity, respectively. The specific diseases with significant associations included stroke, ischemic heart disease, heart failure, arrhythmia, chronic obstructive pulmonary disease, pneumonia and allergic rhinitis. The pooled estimates per 10 µg/m³ increase in long-term PM2.5 exposure were 15.1%, 11.9% and 21.0% increases in cardiovascular, stroke and lung cancer mortality, and 17.4%, 11.0% and 4.88% increases in cardiovascular, hypertension and lung cancer incidence respectively. Adverse changes in blood pressure, heart rate variability, systemic inflammation, blood lipids, lung function and airway inflammation were observed for either short-term or long-term PM2.5 exposure, or both. Collectively, we summarized representative exposure-response relationships between short- and long-term PM2.5 exposure and a wide range of cardiorespiratory outcomes applicable to China. The magnitudes of estimates were generally smaller in short-term associations and comparable in long-term associations compared with those in developed countries. Our findings are helpful for future standard revisions and policy formulation. There are still some notable gaps that merit further investigation in China.  相似文献   

3.
    
The association between PM2.5 (particulate matter ≤ 2.5 µm) short-term exposure and its health effect is non-linear from the epidemiological studies. And this nonlinearity is suggested to be related with the PM2.5 heterogeneity, however, the underlying biological mechanism is still unclear. Here, a total of 38 PM2.5 filters were collected continuously for three weeks in winter Beijing, with the ambient PM2.5 varying between 10 and 270 µg/m3. Human monocytes-derived macrophages (THP-1) were treated with PM2.5 water-soluble elutes at 10 µg/mL to investigate the PM2.5 short-term exposure effect from a proinflammatory perspective. The proinflammatory cytokine tumor necrosis factor (TNF) induced by the PM2.5 elutes at equal concentrations were unequal, showing the heterogeneity of PM2.5 proinflammatory potentials. Of the various chemical and biological components, lipopolysaccharide (LPS) showed a strong positive association with the TNF heterogeneity. However, some outliers were observed among the TNF-LPS association. Specifically, for PM2.5 from relatively clean air episodes, the higher LPS amount corresponded to relatively low TNF levels. And this phenomenon was also observed in the promotion tests by treating macrophages with PM2.5 elutes dosed with additional trace LPS. Gene expression analysis indicated the involvement of oxidative-stress related genes in the LPS signaling pathway. Therefore, a potential oxidative-stress-mediated suppression on the PM2.5-borne LPS proinflammatory effect was proposed to be accounted for the outliers. Overall, the results showed the differential role of LPS in the heterogeneity of PM2.5 proinflammatory effects from a component-based perspective. Future experimental studies are needed to elucidate the signaling pathway of LPS attached on PM2.5 from different air quality episodes.  相似文献   

4.
This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of ?PAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of ?PAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.  相似文献   

5.
    
Atmospheric visibility can directly reflect the air quality. In this study, we measured water-soluble ions (WSIs), organic and element carbon (OC and EC) in PM2.5 from September 2017 to August 2018 in Urumqi, NW China. The results show that SO42?, NO3? and NH4+ were the major WSIs, together accounting for 7.32%–84.12% of PM2.5 mass. Total carbon (TC=OC+EC) accounted for 12.12% of PM2.5 mass on average. And OC/EC > 2 indicated the formation of secondary organic carbon (SOC). The levels of SO42?, NO3? and NH4+ in low visibility days were much higher than those in high visibility days. Relative humidity (RH) played a key role in affecting visibility. The extinction coefficient (bext) that estimated via Koschmieder formula with visibility was the highest in winter (1441.05 ± 739.95 Mm?1), and the lowest in summer (128.58 ± 58.00 Mm?1). The bext that estimated via IMPROVE formula with PM2.5 chemical component was mainly contributed by (NH4)2SO4 and NH4NO3. The bext values calculated by both approaches presented a good correlation with each other (R2 = 0.87). Multiple linear regression (MLR) method was further employed to reconstruct the empirical regression model of visibility as a function of PM2.5 chemical components, NO2 and RH. The results of source apportionment by Positive Matrix Factorization (PMF) model showed that residential coal combustion and vehicle emissions were the major sources of bext.  相似文献   

6.
         下载免费PDF全文
Extensive studies on aerosol chemistry have been carried out in megacities in China, however, aerosol characterization in Central China Plain (CCP) is limited. Here we conducted real-time measurements of fine particle composition with a time-of-flight aerosol chemical speciation monitor in Kaifeng, Henan province in October 2019. Our results showed that nitrate and organics constituted the major fraction of non-refractory PM2.5 for the entire study, on average accounting for 34% and 33%, respectively. However, aerosol composition was substantially different among four periods due to different meteorological conditions and chemical processing. For instance, nitrate presented the lowest contribution during the first period due to evaporative loss associated with high temperature (T), and then rapidly increased during polluted periods as a function of relative humidity (RH). Positive matrix factorization analysis showed the dominance of secondary organic aerosol (SOA) in OA, and also the changes in OA composition under different T and RH levels. In addition, this study is unique with two periods of local emission controls. Back trajectory and coefficient of divergence analysis showed that air pollution in CCP was overall homogeneously distributed. As a result, the effectiveness of local emission controls in this region was strongly affected by meteorological conditions and regional transport. We found that one of the periods with emission control even showed the highest concentrations for the entire study. Our results point towards the limited effect of local emission controls in mitigating air pollution in CCP, and highlight the importance of joint emission controls under unfavorable meteorological conditions.  相似文献   

7.
    
To investigate the cause of fine particulate matter(particles with an aerodynamic diameter less than 2.5 um,PM2.5) pollution in the heating season in the North China Plain(specifically Beijing,Tianjin,and Langfang),water-soluble ions and carbonaceous components in PM2.5were simultaneously measured by online instruments with 1-hr resolution,from November 15,2016 to March 15,2017.The results showed extreme severity of PM2.5 pollution on a regional scale.Secondary inorganic io...  相似文献   

8.
    
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.  相似文献   

9.
    
Understanding the aerosol vertical characterization is of great importance to both climate and atmospheric environment. This study investigated the variations of aerosol profiles over eight regions of interest in China after clean air policy (2013-2019) and discussed the drivers of the vertical aerosol structure, using observations from active satellite measurements (CALIPSO). From the annual variation, the amplitude of extinction coefficient profiles showed a decreasing trend with fluctuations, and the maximum was 0.21 km−1 in Beijing-Tianjin-Hebei (JJJ). For regions suffered from air pollution, the variation was greatest below 0.45 km, while it was between 1-1.5 km for Sichuan Basin. The correlation coefficient between the relative humidity (RH) and the extinction coefficient indicated that the increase of RH inhibited the decrease of the extinction coefficient in the Yangtze River Delta. In most regions, the main aerosol subtypes were polluted dust and polluted continental, but they were coarser in JJJ and North West. The frequency of concurrency of dust and polluted dust aerosols decreased in JJJ, but polluted continental aerosols occurred more frequently. Further, the aerosol extinction coefficient profiles under different pollution conditions showed that it changed most during heavy pollution periods in JJJ, especially in 2017, with a significant aerosol loading between ∼700 and 1200 m. The atmospheric reanalysis data revealed that the weak convergence at low level and the divergence at high level supported the upward transport of aerosols in 2017. Overall, the differences in divergence allocation, RH, and wind filed were the main meteorological drivers.  相似文献   

10.
    
Observations and numerical models are mainly used to investigate the spatiotemporal distribution and vertical structure characteristics of aerosols to understand aerosol pollution and its effects. However, the limitations of observations and the uncertainties of numerical models bias aerosol calculations and predictions. Data assimilation combines observations and numerical models to improve the accuracy of the initial, analytical fields of models and promote the development of atmospheric aerosol pollution research. Numerous studies have been conducted to integrate multi-source data, such as aerosol optical depth and aerosol extinction coefficient profile, into various chemical transport models using various data assimilation algorithms and have achieved good assimilation results. The definition of data assimilation and the main algorithms will be briefly presented, and the progress of aerosol assimilation according to two types of aerosol data, namely, aerosol optical depth and extinction coefficient, will be presented. The application of vertical aerosol data assimilation, as well as the future trends and challenges of aerosol data assimilation, will be further analysed.  相似文献   

11.
         下载免费PDF全文
Dissolved organic matter (DOM) plays a major role in ecological systems and influences the fate and transportation of many pollutants. Despite the significance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited, especially in urban stormwater runoff. In this article, the chemical properties (pollutant loads, molecular weight, aromaticity, sources, and molecular composition) of DOM in stormwater extracted from three typical end-members (traffic, residential, and campus regions) were characterized by UV–visible (UV–vis) spectroscopy, excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC), and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). There are three findings: (1) The basic properties of DOM in stormwater runoff varied obviously from three urban fields, and the effect of initial flush was also apparent. (2) The DOM in residential areas mainly came from autochthonous sources, while allochthonous sources primarily contributed to the DOM in traffic and campus areas. However, it was mainly composed of terrestrial humic-like components with CHO and CHON element composition and HULO and aliphatic formulas. (3) The parameters characterizing DOM were primarily related to terrestrial source and aromaticity, but their correlations varied. Through the combination of optical methods and UPLC-Q-TOF spectrometry, the optical and molecular characteristics of rainwater are effectively revealed, which may provide a solid foundation for the classification management of stormwater runoff in different urban regions.  相似文献   

12.
于2011年4月28日~5月18日对上海大气中颗粒物的质量浓度及细粒子中的化学组分进行了连续观测,获得了上海受春季沙尘天气影响下大气颗粒物质量浓度和主要化学组分特征.结果表明,沙尘天气中PM10和PM2.5的质量浓度显著高于非沙尘天,最高日均浓度分别达到787.2μg·m-3和139.5μg·m-3,PM2.5/PM10的均值为(32.9±14.6)%(15.6%~85.1%);总水溶性无机离子(TWSⅡ)占PM2.5的质量分数为(27.2±19.2)%(4.8%~80.8%),二次组分SNA(SO2-4、NO-3、NH+4)占TWSⅡ的(76.9±13.9)%(41.9%~94.2%),TWSⅡ和SNA对PM2.5的贡献均小于非沙尘天,而Ca2+的含量比却有明显上升.非沙尘天测得的OC/EC值高于强沙尘天,但低于弱沙尘天.此外分析还得到,沙尘中的高矿尘粒子具有酸性缓冲作用,使得沙尘天颗粒的碱性强于沙尘发生前.非沙尘天SO2-4、NO-3主要以NH4HSO4、(NH4)2SO4和NH4NO3的形式存在,沙尘天还会与其他矿物离子结合.  相似文献   

13.
    
Fine particulate matter (PM2.5) exposure is associated with cardiovascular disease (CVD)morbidity and mortality.Mitochondria are sensitive targets of PM2.5,and mitochondrial dysfunction is closely related to the occurrence of CVD.The epigenetic mechanism of PM2.5-triggered mitochondrial injury of cardiomyocytes is unclear.This study focused on the mi R-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance ...  相似文献   

14.
    
Ozonation pretreatment is typically implemented to improve algal cell coagulation. However, knowledge on the effect of ozonation on the characteristics and coagulation of associated algal organic matter, particularly cellular organic matter (COM), which is extensively released during algal bloom decay, is limited. Hence, this study aimed to elucidate the impact of ozonation applied before the coagulation of dissolved COM from the cyanobacteria Microcystis aeruginosa. Additionally, the degradation of microcystins (MCs) naturally present in the COM matrix was investigated. A range of ozone doses (0.1–1.0 mg O3/mg of dissolved organic carbon – DOC) and ozonation pH values (pH 5, 7 and 9) were tested, while aluminium and ferric sulphate coagulants were used for subsequent coagulation. Despite negligible COM removal, ozonation itself eliminated MCs, and a lower ozone dose was required when performing ozonation at acidic or neutral pH (0.4 mg O3/mg DOC at pH 5 and 7 compared to 0.8 mg O3/mg DOC at pH 9). Enhanced MC degradation and a similar pattern of pH dependence were observed after preozonation-coagulation, whereas coagulation alone did not sufficiently remove MCs. In contrast to the benefits of MC depletion, preozonation using ≥ 0.4 mg O3/mg DOC decreased the coagulation efficiency (from 42%/48% to 28%–38%/41%–44% using Al/Fe-based coagulants), which was more severe with increasing ozone dosage. Coagulation was also influenced by the preozonation pH, where pH 9 caused the lowest reduction in COM removal. The results indicate that ozonation efficiently removes MCs, but its employment before COM coagulation is disputable due to the deterioration of coagulation.  相似文献   

15.
Coagulation and precipitation is a widely applied method to remove F? from wastewater. In this work, the effect of coagulation on the removal of F? and organic matter from coking wastewater was studied using AlCl3 and FeCl3 as compound coagulants. The removal rates of F? and organic matter under different coagulant doses and pH conditions were investigated. The results show that the highest removal rates of F? by AlCl3 and FeCl3 are 94.4% and 25.4%, respectively; when the dosage is 10 mmol/L, the TOC removal rates of FeCl3 and AlCl3 reach 20.4% and 34.7%, respectively. Therefore, the removal rate of F? by AlCl3 is higher than that of FeCl3, but the removal rate of organic matter by FeCl3 is relatively higher. The addition of Ca2+ can promote the removal of F?, but the removal rate of organic matter decreases. In addition, by investigating the effects of different pH and Fe–Al ratio on the removal rate, the removal effect of adding FeCl3 and AlCl3 at the same time was discussed. The results show that the most suitable working condition for the removal of organic matter and F? is that the pH is 6.5 and the molar ratio of Al/Fe is 8:2. Overall, the removal mechanism of F? and organic matter in coking wastewater by FeCl3 and AlCl3 was explored in this study. The experimental results can provide reference for the advanced treatment of coking wastewater.  相似文献   

16.
    
Atmospheric aerosols have effects on atmospheric radiation assessments, global climate change, local air quality and visibility. In particular, aerosols are more likely transformed and accumulated in winter. In this paper, we used the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to study the characteristics of aerosol type and contributions of PM2.5 chemical components to aerosol extinction (AE), vertical distribution of aerosols, and source. From December 30, 2018 to January 27, 2019, we conducted MAX-DOAS observations on Sanmenxia. The proportion of PM2.5 to PM10 was 69.48%–95.39%, indicating that the aerosol particles were mainly fine particles. By analyzing the ion data and modifying Interagency Monitoring of Protected Visual Environments (IMPROVE) method, we found that nitrate was the largest contributor to AE, accounting for 31.51%, 28.98%, and 27.95% of AE on heavily polluted, polluted, and clean days, respectively. NH4+, OC, and SO42? were also major contributors to AE. The near-surface aerosol extinction retrieved from MAX-DOAS measurement the PM2.5 and PM10 concentrations measured by an Unmanned Aerial Vehicle (UAV) have the same trend in vertical distribution. AE increased about 3 times from surface to 500 m. With the backward trajectory of the air mass during the haze, we also found that the continuous heavy pollution was mainly caused by transport of polluted air from the northeast, then followed by local industrial emissions and other sources of emissions under continuous and steady weather conditions.  相似文献   

17.
    
An aerosol electrical mobility spectrum analyzer (AEMSA), developed at Hanyang University, was employed to investigate the particle charge characteristics in the Antarctic and Arctic regions. The particle charge characteristics in these areas were compared with the charging state in Ansan, South Korea, located in the midlatitude, where artificial factors, such as human activity, urbanization, and traffic, might result in a higher total concentration. Furthermore, in Ansan, South Korea, the charged-particle polarity ratio was very stable and was close to 1. However, notably different particle charge characteristics were obtained in the Antarctic and Arctic regions. The imbalance between the numbers of positively and negatively charged particles was evident, resulting in more positive charges on the atmospheric particles. On average, the positively charged particle concentrations in the Antarctic and Arctic areas were 1.4 and 2.8 times higher, respectively, compared with the negatively charged particles. The developed AEMSA system and the findings of this study provide useful information on the characteristics of atmospheric aerosols in the Antarctic and Arctic regions and can be further utilized to study particle formation mechanisms.  相似文献   

18.
         下载免费PDF全文
Luoyang is a typical heavy industrial city in China, with a coal-dominated energy structure and serious air pollution. Following the implementation of the clean air actions, the physicochemical characteristics and sources of PM2.5 have changed. A comprehensive study of PM2.5 was conducted from October 16, 2019 to January 23, 2020 to evaluate the effectiveness of previous control measures and further to provide theory basis for more effective policies in the future. Results showed that the aerosol pollution in Luoyang in autumn and winter is still serious with the average concentration of 91.1 μg/m3, although a large reduction (46.9%) since 2014. With the contribution of nitrate increased from 12.5% to 25.1% and sulfate decreased from 16.7% to 11.2%, aerosol pollution has changed from sulfate-dominate to nitrate-dominate. High NO3/SO42− ratio and the increasing of NO3/SO42− ratio with the aggravation of pollution indicating vehicle exhaust playing an increasingly important role in PM2.5 pollution in Luoyang, especially in the haze processes. Secondary inorganic ions contributed significantly to the enhancement of PM2.5 during the pollution period. The high value of Cl/Na+ and EC concentration indicate coal combustion in Luoyang is still serious. The top three contributor sources were secondary inorganic aerosols (33.3%), coal combustion (13.6%), and industrial emissions (13.4%). Close-range transport from the western and northeastern directions were more important factors in air pollution in Luoyang during the sampling period. It is necessary to strengthen the control of coal combustion and reduce vehicle emissions in future policies.  相似文献   

19.
    
China has established the largest clean coal-fired power generation system in the world by accomplishing the technological transformation of coal-fired power plants(CFPPs) to achieve ultra-low emission. The potential for further particulate matter(PM) emission reduction to achieve near-zero emission for CFPPs has become a hotspot issue. In this study,PM emission from some ultra-low emission CFPPs adopting advanced air pollutant control technologies in China was reviewed. The results revealed tha...  相似文献   

20.
         下载免费PDF全文
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号