共查询到20条相似文献,搜索用时 785 毫秒
1.
《环境科学学报(英文版)》2024,36(2):537-546
Metallic glasses have received a lot of attention on wastewater treatment due to their unique atomic structure, and the use of metallic glasses as electrodes has produced unexpected electrocatalytic degradation effects for many pollutants through combining with electrochemical technology. However, it still is a formidable challenge to find a metallic glass electrode material with both efficient and clean for the catalytic degradation of pollutants. In this work, the Cu55Zr45 metallic glassy ribbons are used as an electrode to degrade azo dyes and show the excellent degradation effect, which can reach 95.6% within 40 min. In the degradation process, almost no additives are produced and Cu55Zr45 metallic glassy ribbons have excellent effects under different pH conditions. Meanwhile, it exhibits good stability for degradation efficiency during the 8 cycle degradation tests of the amorphous alloy electrode. When the copper nanoparticles are exposed on the surface of the ribbons, the oxidized copper obtained synergistically produce activated radicals is the primary degradation mechanism, where the auxiliary degradation mechanisms include electron transfer and the promotion of active chlorine. This research develops a new type of electrode material for wastewater treatment, and the economy and high efficiency of Cu55Zr45 metallic glass endow it the expandable functional applications. 相似文献
2.
Lijun Niu Ting Wei Qiangang Li Guangming Zhang Guang Xian Zeqing Long Zhijun Ren 《环境科学学报(英文版)》2020,32(10):109-116
Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based cata... 相似文献
3.
《环境科学学报(英文版)》2023,35(4):656-667
As an active metabolite of venlafaxine and emerging antidepressant, O-desmethylvenlafaxine (ODVEN) was widely detected in different water bodies, which caused potential harm to human health and environmental safety. In this study, the comparative work on the ODVEN degradation by UV (254 nm) and UV-LED (275 nm) activated sodium percarbonate (SPC) systems was systematically performed. The higher removal rate of ODVEN can be achieved under UV-LED direct photolysis (14.99%) than UV direct photolysis (4.57%) due to the higher values of photolysis coefficient at the wavelength 275 nm. Significant synergistic effects were observed in the UV/SPC (80.38%) and UV-LED/SPC (53.57%) systems and the former exhibited better performance for the elimination of ODVEN. The degradation of ODVEN all followed the pseudo-first-order kinetics well in these processes, and the pseudo-first-order rate constant (kobs) increased with increasing SPC concentration. Radicals quenching experiments demonstrated that both ·OH and CO3·− were involved in the degradation of ODVEN and the second-order rate constant of ODVEN with CO3·− (1.58 × 108 (mol/L)−1 sec−1) was reported for the first time based on competitive kinetic method. The introduction of HA, Cl−, NO3− and HCO3− inhibited the ODVEN degradation to varying degrees in the both processes. According to quantum chemical calculation, radical addition at the ortho-position of the phenolic hydroxyl group was confirmed to be the main reaction pathways for the oxidation of ODVEN by ·OH. In addition, the oxidation of ODVEN may involve the demethylation, H-abstraction, OH-addition and C-N bond cleavage. Eventually, the UV-LED/SPC process was considered to be more cost-effective compared to the UV/SPC process, although the UV/SPC process possessed a higher removal rate of ODVEN. 相似文献
4.
Qiongfang Zhuo Xiaofeng Xu Shuibo Xie Xiuwen Ren Zhongying Chen Bo Yang Yanliang Li Junfeng Niu 《环境科学学报(英文版)》2022,34(6):103-113
The simultaneous electro-oxidation of Ni (II)-citrate and electrodeposition recovery of nickel metal were attempted in a combined electro-oxidation-electrodeposition reactor with a boron-doped diamond (BDD) anode and a polished titanium cathode. Effects of initial nickel citrate concentration, current density, initial pH, electrode spacing, electrolyte type, and initial electrolyte dosage on electrochemical performance were examined. The efficiencies of Ni (II)-citrate removal and nickel metal recovery were determined to be 100% and over 72%, respectively, under the optimized conditions (10 mA/cm2, pH 4.09, 80 mmol/L Na2SO4, initial Ni (II)-citrate concentration of 75 mg/L, electrode spacing of 1 cm, and 180 min of electrolysis). Energy consumption increased with increased current density, and the energy consumption was 0.032 kWh/L at a current density of 10 mA/cm2 (pH 6.58). The deposits at the cathode were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These characterization results indicated that the purity of metallic nickel in cathodic deposition was over 95%. The electrochemical system exhibited a prospective approach to oxidize metal complexes and recover metallic nickel. 相似文献
5.
《环境科学学报(英文版)》2023,35(4):387-395
This study examined the effectiveness for degradation of hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions of natural organic matter (NOM) during UV/H2O2, UV/TiO2 and UV/K2S2O8 (UV/PS) advanced oxidation processes (AOPs). The changing characteristics of NOM were evaluated by dissolved organic carbon (DOC), the specific UV absorbance (SUVA), trihalomethanes formation potential (THMFP), organic halogen adsorbable on activated carbon formation potential (AOXFP) and parallel factor analysis of excitation–emission matrices (PARAFAC-EEMs). In the three UV-based AOPs, HPI fraction with low molecular weight and aromaticity was more likely to degradate than HPO and TPI, and the removal efficiency of SUVA for HPO was much higher than TPI and HPI fraction. In terms of the specific THMFP of HPO, TPI and HPI, a reduction was achieved in the UV/H2O2 process, and the higest removal rate even reached to 83%. UV/TiO2 and UV/PS processes can only decrease the specific THMFP of HPI. The specific AOXFP of HPO, TPI and HPI fractions were all able to be degraded by the three UV-based AOPs, and HPO content is more susceptible to decompose than TPI and HPI content. UV/H2O2 was found to be the most effective treatment for the removal of THMFP and AOXFP under given conditions. C1 (microbial or marine derived humic-like substances), C2 (terrestrially derived humic-like substances) and C3 (tryptophan-like proteins) fluorescent components of HPO fraction were fairly labile across the UV-based AOPs treatment. C3 of each fraction of NOM was the most resistant to degrade upon the UV-based AOPs. Results from this study may provide the prediction about the consequence of UV-based AOPs for the degradation of different fractions of NOM with varied characteristics. 相似文献
6.
Minghuo Wu Jie Du Zhijun An Yufeng Hu Xianliang Yi Hao Zhou Jingjing Zhan 《环境科学学报(英文版)》2022,34(12):227-235
Sulfonamides (SAs) are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues. Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water. Degradation rates of 95%-99.7% were achieved in this work for the tested 8 SAs, including sulfisomidine, sulfameter (SME), phthalylsulfathiazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfisoxazole, sulfachloropyridazine, and sulfadimethoxine, in the Fe3O4/peroxodisulfate (PDS) oxidation system after the optimization of PDS concentration and pH. Meanwhile, it was found that a lot of unknown oxidation products were formed, which brought up the uncertainty of health risks to the environment, and the identification of these unknown products was critical. Therefore, SME was selected as the model compound, from which the oxidation products were never elucidated, to identify these intermediates/products. With liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS), 10 new products were identified, in which 2-amino-5-methoxypyrimidine (AMP) was confirmed by its standard. The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions, such as oxidation of the amino group, SO2 extrusion, and potential cross-reaction occurred simultaneously. Though most of the products were not verified due to the lack of standards, our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater. 相似文献
7.
Cobalt iron spinel (CoFe2O4) has been considered as a good heterogeneous catalysis to peroxymonosulfate (PMS) in the degradation of persistent organic pollutants due to its magnetic properties and good chemical stability. However, its catalytic activity needs to be further improved. Here, a facial strategy, “in-situ substitution”, was adopted to modify CoFe2O4 to improve its catalytic performance just by suitably increasing the Co/Fe ratio in synthesis process. Compared with CoFe2O4, the newly synthesized Co1.5Fe1.5O4, could not only significantly improve the degradation efficiency of phenol, from 50.69 to 93.6%, but also exhibited more effective mineralization ability and higher PMS utilization. The activation energy advantage for phenol degradation using Co1.5Fe1.5O4 was only 44.2 kJ/mol, much lower than that with CoFe2O4 (127.3 kJ/mol). A series of related representations of CoFe2O4 and Co1.5Fe1.5O4 were compared to explore the possible reasons for the outstanding catalytic activity of Co1.5Fe1.5O4. Results showed that Co1.5Fe1.5O4 as well represented spinel crystal as CoFe2O4 and the excess cobalt just partially replaced the position of iron without changing the original structure. Co1.5Fe1.5O4 had smaller particle size (8.7 nm), larger specific surface area (126.3 m2/g), which was more favorable for exposure of active sites. Apart from the superior physical properties, more importantly, more reactive centers Co (Ⅱ) and surface hydroxyl compounds generated on Co1.5Fe1.5O4, which might be the major reason. Furthermore, Co1.5Fe1.5O4 behaved good paramagnetism, wide range of pH suitability and strong resistance to salt interference, making it a new prospect in environmental application. 相似文献
8.
《环境科学学报(英文版)》2023,35(4):644-655
The catalytic oxidation effect of MnSO4 on As(III) by air in an alkaline solution was investigated. According to the X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis results of the product, it was shown that the introduction of MnSO4 in the form of solution would generate Na0.55Mn2O4·1.5H2O with strong catalytic oxidation ability in the aerobic alkaline solution, whereas the catalytic effect of the other product MnOOH is not satisfactory. Under the optimal reaction conditions of temperature 90°C, As/Mn molar ratio 12.74:1, air flow rate 1.0 L/min, and stirring speed 300 r/min, As(III) can be completely oxidized after 2 hr reaction. The excellent catalytic oxidation ability of MnSO4 on As(III) was mainly attributed to the indirect oxidation of As(III) by the product Na0.55Mn2O4·1.5H2O. This study shows a convenient and efficient process for the oxidation of As(III) in alkali solutions, which has potential application value for the pre-oxidation of arsenic-containing solution or the detoxification of As(III). 相似文献
9.
《环境科学学报(英文版)》2023,35(3):47-60
Photocatalytic degradation was considered as a best strategy for the removal of antibiotic drug pollutants from wastewater. The photocatalyst of ABC (Ag2CO3/BiOBr/CdS) composite synthesized by hydrothermal and precipitation method. The ABC composite used to investigate the degradation activity of tetracycline (TC) under visible light irradiation. The physicochemical characterization methods (e.g. scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), ultraviolet visible spectroscopy (UV), photoluminescence (PL) and time resolved photoluminescence (TRPL) clearly indicate that the composite has been construct successfully that enhances the widened visible light absorption, induces charge transfer and separation efficiency of electron – hole pairs. The photocatalytic activity of all samples was examined through photodegradation of tetracycline in aqueous medium. The photocatalytic degradation rate of ABC catalyst could eliminate 98.79% of TC in 70 min, which is about 1.5 times that of Ag2CO3, 1.28 times that of BiOBr and 1.1 times that of BC catalyst, respectively. The role of operation parameters like, TC concentration, catalyst dosage and initial pH on TC degradation activity were studied. Quenching experiment was demonstrated that ·OH and O2·− were played a key role during the photocatalysis process that was evidently proved in electron paramagnetic resonance (EPR) experiment. In addition, the catalyst showed good activity perceived in reusability and stability test due to the synergistic effect between its components. The mechanism of degradation of TC in ABC composite was proposed based on the detailed analysis. The current study will give an efficient and recyclable photocatalyst for antibiotic aqueous pollutant removal. 相似文献
10.
Jin Jiang Ying Cao Juan Li Yanxin Zhao Yumeng Zhao Wei Qiu Suyan Pang 《环境科学学报(英文版)》2023,35(6):107-116
The degradation of metoprolol (MTP) by the UV/sulfite with oxygen as an advanced reduction process (ARP) and that without oxygen as an advanced oxidation process (AOP) was comparatively studied herein. The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of and , respectively. Scavenging experiments demonstrated that both and played a crucial role in MTP degradation by the UV/sulfite as an ARP, while was the dominant oxidant in the UV/sulfite AOP. The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8. The results could be well explained by the pH impacts on the MTP speciation and sulfite species. Totally six transformation products (TPs) were identified from MTP degradation by the UV/sulfite ARP, and two additional ones were detected in the UV/sulfite AOP. The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory (DFT). The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that / and might share similar reaction mechanisms, primarily including hydroxylation, dealkylation, and H abstraction. The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Structure Activity Relationships (ECOSAR) software, due to the accumulation of TPs with higher toxicity. 相似文献
11.
Yuanyuan Qu Wenli Shen Xiaofang Pei Fang M Shengnan You Shuzhen Li Jingwei Wang Jiti Zhou 《环境科学学报(英文版)》2017,29(6):79-86
Developing an eco-friendly approach for metallic nanoparticles synthesis is important in current nanotechnology research. In this study, green synthesis of gold nanoparticles(AuNPs) was carried out by a newly isolated strain Trichoderma sp. WL-Go. UV–vis spectra of Au NPs showed a surface plasmon resonance peak at 550 nm, and transmission electron microscopy images revealed that the Au NPs were of varied shape with well dispersibility.The optimal conditions for Au NPs synthesis were HAuCl_4 1.0 mmol/L, biomass 0.5 g and pH 7–11. Moreover, the bio-Au NPs could efficiently catalyze the decolorization of various azo dyes. This research provided a new microbial resource candidate for green synthesis of Au NPs and demonstrated the potential application of bio-Au NPs for azo dye decolorization. 相似文献
12.
13.
Meng Si Boxiong Shen George Adwek Lifu Xiong Lijun Liu Peng Yuan Hongpei Gao Cai Liang Qihai Guo 《环境科学学报(英文版)》2021,33(3):49-71
Due to the increasingly strict emission standards of NOx on various industries, many traditional flue gas treatment methods have been gradually improved. Except for selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) methods to remove NOx from flue gas, theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas. This paper summarizes the efficiency, reaction conditions, effect factors, and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation, gas-phase oxidation, plasma technology, and catalytic oxidation. The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail. The advantages and disadvantages of different oxidation methods are summarized, and the suggestions for future research on NO oxidation are put forward at the end. The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas. 相似文献
14.
Citrate (Ct) was chosen as a typical chelator used in the Fe2+-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe2+-Ct process exhibited better performance in sludge dewatering than PDS-Fe2+.Specifically,with a PDS dosage of 1.2 mmol/g VS,the molar ratio of PDS/Fe2+and Ct/Fe2+were 4:5 and 1:4,respectively,the capillary suction time decreased from 155.8 to 24.8sec,and the sludge cake water content decreased from 82.62%t... 相似文献
15.
Chunyan Ma Jushuang Pan Cheng Chen Yuanyuan Dong Feng Yao Fengbang Wang Maoyong Song 《环境科学学报(英文版)》2024,36(3):310-320
The rapid deactivation of cost-effective MnO2-based catalysts in humid air limits their application in practice,and the identification of the role of water in an oxidation process is significant for developing water-resistant MnO2-based catalysts.Here,CuMnO2showed a20.3%HCHO conversion in 10 hr at room temperature in humid air with relative humidity of 40%,but deactivated in 3 hr in dry air.The excellent activity and stability of HCHO oxidation in humid air were ... 相似文献
16.
《环境科学学报(英文版)》2023,35(2):371-378
PdAg/Al2O3 were pretreated by CO and H2 reduction pretreatments, respectively. The reduced catalysts were tested for HCHO and CO oxidation and characterized by Brunner Emmet Teller (BET), X-ray diffraction (XRD), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and oxygen temperature programmed desorption (O2-TPD). These results indicate that the pretreatments have effect on PdAg reconstruction, PdAg particle size and active oxygen species, which are responsible for the catalytic performance. Compared with H2 reduction method, CO reduction is more suitable for PdAg/Al2O3 pretreatment. PdAg/Al2O3-CO exhibited better catalytic performance. 相似文献
17.
18.
The release of biochar colloids considerably affects the stability of biochar in environment. Currently, information on the release behavior and suspension stability of biochar colloids in real soil solutions is scarce. In this study, 20 soils were collected from different districts in China and the release behavior of biochar colloids and their suspension stability in soil solutions were systematically examined. The results showed that both pyrolysis temperature and biomass source had important effects on the formation of biochar colloids in soil solutions. The formation amount of biochar colloids from low pyrolysis temperatures (400 °C) (average amount of 9.33–16.41 mg/g) were significantly higher than those from high pyrolysis temperatures (700 °C) (average amount of less than 2 mg/g). The formation amount of wheat straw-derived biochar colloids were higher than those of rice straw-derived biochar colloids probably due to the higher O/C ratio in wheat-straw biochar. Further, biochar colloidal formation amount was negatively correlated with comprehensive effect of dissolved organic carbon, Fe and Al in soil solutions. The sedimentation curve of biochar colloids in soil solutions is well described by an exponential model and demonstrated high suspension stability. Around 40% of the biochar colloids were maintained in the suspension at the final sedimentation equilibrium. The settling efficiency of biochar colloids was positively correlated with comprehensive effect of the ionic strength and K, Ca, Na, and Mg contents in soil solutions. Our findings help promote a deeper understanding of biochar loss and stability in the soil-water environment. 相似文献
19.
Accelerating the (NH4)2SO3 oxidation gives rise to the reclaiming of byproduct, while there are secondary environmental risks from reduction of the coexisted selenium species by sulfite. In this study, a bi-functional Co-SBA-15-SH, were synthesized through Co impregnation and sulfhydryl (-SH) decoration, which can simultaneously uptake Se and accelerate sulfite oxidation efficiently. Meanwhile, the adsorption kinetics and migration mechanism of Se species were revealed through characterization and density functional calculations, with maximum adsorption capacity of 223 mg/g. The inhibition of Se0 re-emission and poisonous effect of Se on sulfite oxidation was also investigated. Using the findings of this study, the ammonia desulfurization can be improved by enabling purification of the byproduct and lowering the toxicity of effluent by removing toxic pollutants. 相似文献
20.
Yongpeng Ji Xingyu Chen Yuqi Xiao Yuemeng Ji Weina Zhang Jiaxin Wang Jiangyao Chen Guiying Li Taicheng An 《环境科学学报(英文版)》2021,33(7):56-63
Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles. 相似文献