共查询到20条相似文献,搜索用时 15 毫秒
1.
《环境科学学报(英文版)》2023,35(4):656-667
As an active metabolite of venlafaxine and emerging antidepressant, O-desmethylvenlafaxine (ODVEN) was widely detected in different water bodies, which caused potential harm to human health and environmental safety. In this study, the comparative work on the ODVEN degradation by UV (254 nm) and UV-LED (275 nm) activated sodium percarbonate (SPC) systems was systematically performed. The higher removal rate of ODVEN can be achieved under UV-LED direct photolysis (14.99%) than UV direct photolysis (4.57%) due to the higher values of photolysis coefficient at the wavelength 275 nm. Significant synergistic effects were observed in the UV/SPC (80.38%) and UV-LED/SPC (53.57%) systems and the former exhibited better performance for the elimination of ODVEN. The degradation of ODVEN all followed the pseudo-first-order kinetics well in these processes, and the pseudo-first-order rate constant (kobs) increased with increasing SPC concentration. Radicals quenching experiments demonstrated that both ·OH and CO3·− were involved in the degradation of ODVEN and the second-order rate constant of ODVEN with CO3·− (1.58 × 108 (mol/L)−1 sec−1) was reported for the first time based on competitive kinetic method. The introduction of HA, Cl−, NO3− and HCO3− inhibited the ODVEN degradation to varying degrees in the both processes. According to quantum chemical calculation, radical addition at the ortho-position of the phenolic hydroxyl group was confirmed to be the main reaction pathways for the oxidation of ODVEN by ·OH. In addition, the oxidation of ODVEN may involve the demethylation, H-abstraction, OH-addition and C-N bond cleavage. Eventually, the UV-LED/SPC process was considered to be more cost-effective compared to the UV/SPC process, although the UV/SPC process possessed a higher removal rate of ODVEN. 相似文献
2.
电化学高级氧化技术是处理有机染料废水的有效技术方法之一,但其应用受传统贵金属电极成本高、易毒化失活等缺陷的限制.本研究采用廉价易得的石墨粉材料,制备氧化石墨烯(GO)催化剂,用于活性黑5(RBk5)染料废水的电催化氧化降解研究.利用透射电子显微镜、X射线光电子能谱、红外光谱、拉曼光谱、循环伏安法和电化学阻抗谱分析材料的结构特性及电化学性能.结果显示,氧化石墨烯具有较高的电子迁移速率,良好的亲水性和电催化活性.不同的RBk5浓度、外加电流、电解质、初始pH值等条件对RBk5的降解效率也有一定程度的影响.其中,电解质因素对材料性能影响最为显著.在RBk5浓度为10mg/L、外加电流为20mA、反应时间为35min、电解质为NaCl的条件下,电催化降解效率可以达到100%. 相似文献
3.
Cobalt iron spinel (CoFe2O4) has been considered as a good heterogeneous catalysis to peroxymonosulfate (PMS) in the degradation of persistent organic pollutants due to its magnetic properties and good chemical stability. However, its catalytic activity needs to be further improved. Here, a facial strategy, “in-situ substitution”, was adopted to modify CoFe2O4 to improve its catalytic performance just by suitably increasing the Co/Fe ratio in synthesis process. Compared with CoFe2O4, the newly synthesized Co1.5Fe1.5O4, could not only significantly improve the degradation efficiency of phenol, from 50.69 to 93.6%, but also exhibited more effective mineralization ability and higher PMS utilization. The activation energy advantage for phenol degradation using Co1.5Fe1.5O4 was only 44.2 kJ/mol, much lower than that with CoFe2O4 (127.3 kJ/mol). A series of related representations of CoFe2O4 and Co1.5Fe1.5O4 were compared to explore the possible reasons for the outstanding catalytic activity of Co1.5Fe1.5O4. Results showed that Co1.5Fe1.5O4 as well represented spinel crystal as CoFe2O4 and the excess cobalt just partially replaced the position of iron without changing the original structure. Co1.5Fe1.5O4 had smaller particle size (8.7 nm), larger specific surface area (126.3 m2/g), which was more favorable for exposure of active sites. Apart from the superior physical properties, more importantly, more reactive centers Co (Ⅱ) and surface hydroxyl compounds generated on Co1.5Fe1.5O4, which might be the major reason. Furthermore, Co1.5Fe1.5O4 behaved good paramagnetism, wide range of pH suitability and strong resistance to salt interference, making it a new prospect in environmental application. 相似文献
4.
Lijun Niu Ting Wei Qiangang Li Guangming Zhang Guang Xian Zeqing Long Zhijun Ren 《环境科学学报(英文版)》2020,32(10):109-116
Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based cata... 相似文献
5.
Qiongfang Zhuo Xiaofeng Xu Shuibo Xie Xiuwen Ren Zhongying Chen Bo Yang Yanliang Li Junfeng Niu 《环境科学学报(英文版)》2022,34(6):103-113
The simultaneous electro-oxidation of Ni (II)-citrate and electrodeposition recovery of nickel metal were attempted in a combined electro-oxidation-electrodeposition reactor with a boron-doped diamond (BDD) anode and a polished titanium cathode. Effects of initial nickel citrate concentration, current density, initial pH, electrode spacing, electrolyte type, and initial electrolyte dosage on electrochemical performance were examined. The efficiencies of Ni (II)-citrate removal and nickel metal recovery were determined to be 100% and over 72%, respectively, under the optimized conditions (10 mA/cm2, pH 4.09, 80 mmol/L Na2SO4, initial Ni (II)-citrate concentration of 75 mg/L, electrode spacing of 1 cm, and 180 min of electrolysis). Energy consumption increased with increased current density, and the energy consumption was 0.032 kWh/L at a current density of 10 mA/cm2 (pH 6.58). The deposits at the cathode were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These characterization results indicated that the purity of metallic nickel in cathodic deposition was over 95%. The electrochemical system exhibited a prospective approach to oxidize metal complexes and recover metallic nickel. 相似文献
6.
《环境科学学报(英文版)》2023,35(3):47-60
Photocatalytic degradation was considered as a best strategy for the removal of antibiotic drug pollutants from wastewater. The photocatalyst of ABC (Ag2CO3/BiOBr/CdS) composite synthesized by hydrothermal and precipitation method. The ABC composite used to investigate the degradation activity of tetracycline (TC) under visible light irradiation. The physicochemical characterization methods (e.g. scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), ultraviolet visible spectroscopy (UV), photoluminescence (PL) and time resolved photoluminescence (TRPL) clearly indicate that the composite has been construct successfully that enhances the widened visible light absorption, induces charge transfer and separation efficiency of electron – hole pairs. The photocatalytic activity of all samples was examined through photodegradation of tetracycline in aqueous medium. The photocatalytic degradation rate of ABC catalyst could eliminate 98.79% of TC in 70 min, which is about 1.5 times that of Ag2CO3, 1.28 times that of BiOBr and 1.1 times that of BC catalyst, respectively. The role of operation parameters like, TC concentration, catalyst dosage and initial pH on TC degradation activity were studied. Quenching experiment was demonstrated that ·OH and O2·− were played a key role during the photocatalysis process that was evidently proved in electron paramagnetic resonance (EPR) experiment. In addition, the catalyst showed good activity perceived in reusability and stability test due to the synergistic effect between its components. The mechanism of degradation of TC in ABC composite was proposed based on the detailed analysis. The current study will give an efficient and recyclable photocatalyst for antibiotic aqueous pollutant removal. 相似文献
7.
《环境科学学报(英文版)》2023,35(4):387-395
This study examined the effectiveness for degradation of hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions of natural organic matter (NOM) during UV/H2O2, UV/TiO2 and UV/K2S2O8 (UV/PS) advanced oxidation processes (AOPs). The changing characteristics of NOM were evaluated by dissolved organic carbon (DOC), the specific UV absorbance (SUVA), trihalomethanes formation potential (THMFP), organic halogen adsorbable on activated carbon formation potential (AOXFP) and parallel factor analysis of excitation–emission matrices (PARAFAC-EEMs). In the three UV-based AOPs, HPI fraction with low molecular weight and aromaticity was more likely to degradate than HPO and TPI, and the removal efficiency of SUVA for HPO was much higher than TPI and HPI fraction. In terms of the specific THMFP of HPO, TPI and HPI, a reduction was achieved in the UV/H2O2 process, and the higest removal rate even reached to 83%. UV/TiO2 and UV/PS processes can only decrease the specific THMFP of HPI. The specific AOXFP of HPO, TPI and HPI fractions were all able to be degraded by the three UV-based AOPs, and HPO content is more susceptible to decompose than TPI and HPI content. UV/H2O2 was found to be the most effective treatment for the removal of THMFP and AOXFP under given conditions. C1 (microbial or marine derived humic-like substances), C2 (terrestrially derived humic-like substances) and C3 (tryptophan-like proteins) fluorescent components of HPO fraction were fairly labile across the UV-based AOPs treatment. C3 of each fraction of NOM was the most resistant to degrade upon the UV-based AOPs. Results from this study may provide the prediction about the consequence of UV-based AOPs for the degradation of different fractions of NOM with varied characteristics. 相似文献
8.
Yufei Shi Jinju Geng Xiang Li Yuli Qian Hongzhou Li Liye Wang Gang Wu Qingmiao Yu Ke Xu Hongqiang Ren 《环境科学学报(英文版)》2022,34(6):220-228
The characteristics of dissolved organic matter (DOM) can significantly affect the degradation of target compounds by the advanced oxidation processes. In this study, the effects of the different hydrophobicity/hydrophilicity fractions, molecular weight (MW) fractions, fluorescence components and molecular components of DOM extracted from municipal wastewater on the degradation of 4 pharmaceutically active compounds (PhACs), including carbamazepine, clofibric acid, atenolol and erythromycin by the UV/H2O2 process were investigated. The results showed that the degradation rate constants of 4 PhACs decreased dramatically in the presence of DOM. The linear regressions of 4 PhACs degradation as a function of specific fluorescence intensity (SFI) are exhibited during the degradation of 4 PhACs and the SFI may be used to evaluate effect of DOM on target compounds in wastewater. The hydrophobic acid (HPO-A) exhibited the strongest inhibitory effect on degradation of 4 PhACs during oxidation process. The small MW fractions of DOM significantly inhibited the degradation of 4 PhACs during oxidation process. Among three fluorescence components, hydrophobic humic-like substances may significantly inhibit the degradation of 4 PhACs during oxidation process. At the molecular level, the formulas may be derived from terrestrial sources. CHO compound may significantly inhibit the degradation of 4 PhACs during oxidation process on formula classes. The unsaturated hydrocarbons, carbohydrates and tannins compounds may significantly inhibit the effectiveness of the UV/H2O2 process on compound classes. 相似文献
9.
Kalyani Mer Baharak Sajjadi Nosa.O. Egiebor Wei-Yin Chen Daniell.L. Mattern Wendong Tao 《环境科学学报(英文版)》2021,33(1):267-273
Generation of hydroxyl radicals (?OH) is the basis of advanced oxidation process (AOP). This study investigates the catalytic activity of microporous carbonaceous structure for in-situ generation of ?OH radicals. Biochar (BC) was selected as a representative of carbon materials with a graphitic structure. The work aims at assessing the impact of BC structure on the activation of H2O2, the reinforcement of the persistent free radicals (PFRs) in BC using heavy metal complexes, and the subsequent AOP. Accordingly, three different biochars (raw, chemically- and physiochemically-activated BCs) were used for adsorption of two metal ions (nickel and lead) and the degradation of phenol (100 mg/L) through AOP. The results demonstrated four outcomes: (1) The structure of carbon material, the identity and the quantity of the metal complexes in the structure play the key roles in the AOP process. (2) the quantity of PFRs on BC significantly increased (by 200%) with structural activation and metal loading. (3) Though the Pb-loaded BC contained a larger quantity of PFRs, Ni-loaded BC exhibited a higher catalytic activity. (4) The degradation efficiency values for phenol by modified biochar in the presence of H2O2 was 80.3%, while the removal efficiency was found to be 17% and 22% in the two control tests, with H2O2 (no BC) and with BC (no H2O2), respectively. Overall, the work proposes a new approach for dual applications of carbonaceous structures; adsorption of metal ions and treatment of organic contaminants through in-situ chemical oxidation (ISCO). 相似文献
10.
Minghuo Wu Jie Du Zhijun An Yufeng Hu Xianliang Yi Hao Zhou Jingjing Zhan 《环境科学学报(英文版)》2022,34(12):227-235
Sulfonamides (SAs) are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues. Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water. Degradation rates of 95%-99.7% were achieved in this work for the tested 8 SAs, including sulfisomidine, sulfameter (SME), phthalylsulfathiazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfisoxazole, sulfachloropyridazine, and sulfadimethoxine, in the Fe3O4/peroxodisulfate (PDS) oxidation system after the optimization of PDS concentration and pH. Meanwhile, it was found that a lot of unknown oxidation products were formed, which brought up the uncertainty of health risks to the environment, and the identification of these unknown products was critical. Therefore, SME was selected as the model compound, from which the oxidation products were never elucidated, to identify these intermediates/products. With liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS), 10 new products were identified, in which 2-amino-5-methoxypyrimidine (AMP) was confirmed by its standard. The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions, such as oxidation of the amino group, SO2 extrusion, and potential cross-reaction occurred simultaneously. Though most of the products were not verified due to the lack of standards, our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater. 相似文献
11.
A nitrogen-doped titanium dioxide composite photocatalyst(N–TiO_2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A(UV-A), B(UV-B), and C(UV-C), visible light, and direct sunlight irradiation. Results show that by using N–TiO_2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO_2. The best results are obtained at a nitrogen to TiO_2 mass ratio of 0.15(N:TiO_2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO_2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment. 相似文献
12.
《环境科学学报(英文版)》2023,35(4):644-655
The catalytic oxidation effect of MnSO4 on As(III) by air in an alkaline solution was investigated. According to the X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis results of the product, it was shown that the introduction of MnSO4 in the form of solution would generate Na0.55Mn2O4·1.5H2O with strong catalytic oxidation ability in the aerobic alkaline solution, whereas the catalytic effect of the other product MnOOH is not satisfactory. Under the optimal reaction conditions of temperature 90°C, As/Mn molar ratio 12.74:1, air flow rate 1.0 L/min, and stirring speed 300 r/min, As(III) can be completely oxidized after 2 hr reaction. The excellent catalytic oxidation ability of MnSO4 on As(III) was mainly attributed to the indirect oxidation of As(III) by the product Na0.55Mn2O4·1.5H2O. This study shows a convenient and efficient process for the oxidation of As(III) in alkali solutions, which has potential application value for the pre-oxidation of arsenic-containing solution or the detoxification of As(III). 相似文献
13.
The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations (Na+, K+, Ca 2+, Mg2+, and Al3+). The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B (RhB) under ultraviolet A (UV-A) irradiation over time. The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al3+, while the performance was impaired by the other tested cations. The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions. The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte (< 0.01?mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes (> 0.1?mol/L) with larger increase or decrease of pH. The positive effects of Al3+ on the photodegradation rate of RhB might relate to the strong hydrolytic action of Al3+ in aquatic solutions. The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations. These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments. 相似文献
14.
Jingjing Jiang Jiaying Gao Shu Niu Xingyue Wang Tianren Li Shengda Liu Yanhong Lin Tengfeng Xie Shuangshi Dong 《环境科学学报(英文版)》2021,33(8):147-160
The extensive use of tetracycline hydrochloride (TCH) poses a threat to human health and the aquatic environment. Here, magnetic p-n Bi2WO6/CuFe2O4 catalyst was fabricated to efficiently remove TCH. The obtained Bi2WO6/CuFe2O4 exhibited 92.1% TCH degradation efficiency and 50.7% and 35.1% mineralization performance for TCH and raw secondary effluent from a wastewater treatment plant in a photo-Fenton-like system, respectively. The remarkable performance was attributed to the fact that photogenerated electrons accelerated the Fe(III)/Fe(II) and Cu(II)/Cu(I) conversion for the Fenton-like reaction between Fe(II)/Cu(I) and H2O2, thereby generating abundant ?OH for pollutant oxidation. Various environmental factors including H2O2 concentration, initial pH, catalyst dosage, TCH concentration and inorganic ions were explored. The reactive oxidation species (ROS) quenching results and electron spin resonance (ESR) spectra confirmed that ?O2? and ?OH were responsible for the dark and photo-Fenton-like systems, respectively. The degradation mechanisms and pathways of TCH were proposed, and the toxicity of products was evaluated. This work contributes a highly efficient and environmentally friendly catalyst and provides a clear mechanistic explanation for the removal of antibiotic pollutants in environmental remediation. 相似文献
15.
Xiaoai Lu Junqian He Jing Xie Ying Zhou Shuo Liu Qiulian Zhu Hanfeng Lu 《环境科学学报(英文版)》2020,32(1):39-48
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous... 相似文献
16.
In this study, a photocatalytic material consisting of ZnO and yttrium-doped ZnO (YZO) nanoparticles was obtained via a facile precipitation conducted under ambient pressure whereby crystalline ZnO was successfully doped with yttrium. YZO had a hexagonal wurtzite polycrystalline structure with smaller crystal and grain sizes than ZnO, which in turn meant larger specific surface area and pore volume. Chemical defects were also produced, which facilitated photocatalytic activity, because such defects can act as reaction centers. The optical band gap magnitude and the diamagnetic nature of YZO were also determined. The structural, crystalline, and chemical defects of YZO synergistically enhanced the photocatalytic degradation of carbaryl; indeed, the kinetic rate constant of this reaction catalyzed by YZO was 11.17 × 10−2 min−1 under natural sunlight irradiation, higher than the value measured for ZnO (8.68 × 10−2 min−1). Evidence thus indicates that yttrium-doping effectively modified some properties of ZnO nanoparticles so that YZO nanoparticles proved a suitable photocatalytic material for carbaryl degradation. 相似文献
17.
《环境科学学报(英文版)》2023,35(3):388-400
Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency. This study used a simple hydrothermal method to prepare a non-metallic, S-doped NaTaO3 (S-NTO) photocatalyst, which was then loaded onto biochar (BC) to form a S-NTO/BC composite photocatalyst. After uniform loading onto BC, the S-NTO particles transformed from cubic to spherical. The photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than those of the NTO particles. The light absorption range of the catalyst was effectively widened from 310 nm UV region to visible region. In addition, a dual-effect catalytic system was constructed by introducing peroxymonosulfate (PMS) into the environment of the pollution to be degraded. The Rhodamine B, Methyl Orange, Acid Orange 7, tetracycline, and ciprofloxacin degradation efficiency at 40 mg/L reached 99.6%, 99.2%, 84.5%, 67.1%, and 70.7%, respectively, after irradiation by a 40 W lamps for 90 min. The high-efficiency visible-light catalytic activity of the dual-effect catalytic system was attributed to doping with non-metallic sulfur and loading of catalysts onto BC. The development of this dual-effect catalytic system provides new ideas for quickly and efficiently solving the problem of high-concentration organic pollution in aqueous environments, rationally and fully utilizing solar energy, and expanding the application of photocatalytic technology to practice. 相似文献
18.
Meng Si Boxiong Shen George Adwek Lifu Xiong Lijun Liu Peng Yuan Hongpei Gao Cai Liang Qihai Guo 《环境科学学报(英文版)》2021,33(3):49-71
Due to the increasingly strict emission standards of NOx on various industries, many traditional flue gas treatment methods have been gradually improved. Except for selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) methods to remove NOx from flue gas, theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas. This paper summarizes the efficiency, reaction conditions, effect factors, and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation, gas-phase oxidation, plasma technology, and catalytic oxidation. The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail. The advantages and disadvantages of different oxidation methods are summarized, and the suggestions for future research on NO oxidation are put forward at the end. The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas. 相似文献
19.
Tong Li Xiange Du Jieqiong Deng Kai Qi Jiandong Zhang Lili Gao Xiuping Yue 《环境科学学报(英文版)》2021,33(10):188-200
Environment-friendly nano-catalysts capable of activating peroxymonosulfate (PMS) have received increasing attention recently. Nevertheless, traditional nano-catalysts are generally well dispersed and difficult to be separated from reaction system, so it is particularly important to develop nano-catalysts with both good catalytic activity and excellent recycling efficiency. In this work, magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides (Fe3O4/CoFeCu-LDHs) was prepared by a simple co-precipitation method and initially applied to activate PMS for the degradation of Rhodamine B (RhB). X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller method (BET), and vibrating sample magnetometer (VSM) were applied to characterize morphology, structure, specific surface area and magnetism. In addition, the effects of several key parameters were evaluated. The Fe3O4/CoFeCu-LDHs exhibited high catalytic activity, and RhB degradation efficiency could reach 100% within 20 min by adding 0.2 g/L of catalyst and 1 mmol/L of PMS into 50 mg/L of RhB solution under a wide pH condition (3.0-7.0). Notably, the Fe3O4/CoFeCu-LDHs showed good super-paramagnetism and excellent stability, which could be effectively and quickly recovered under magnetic condition, and the degradation efficiency after ten cycles could still maintain 98.95%. Both radicals quenching tests and electron spin resonance (ESR) identified both HO? and SO4?? were involved and SO4?? played a dominant role on the RhB degradation. Finally, the chemical states of the sample's surface elements were measured by X-ray photoelectron spectroscopy (XPS), and the possible activation mechanism in Fe3O4/CoFeCu-LDHs/PMS system was proposed according to comprehensive analysis. 相似文献
20.
Yuanming Peng Yunsong Mu Chao Xue Anwei Chen Liang Peng Haiyong Wu Si Luo 《环境科学学报(英文版)》2021,33(2):110-116
As an aliphatic amino acid, cysteine (CYS) is diffuse in the living cells of plants and animals. However, little is known of its role in the reactivity of nano-sized zero-valent iron (NZVI) in the degradation of pollutants. This study shows that the introduction of CYS to the NZVI system can help improve the efficiency of reduction, with 30% more efficient degradation and a reaction rate constant nine times higher when nitrobenzene (NB) is used as probe compound. The rates of degradation of NB were positively correlated with the range of concentrations of CYS from 0 to 10 mmol/L. The introduction of CYS increased the maximum concentration of Fe(III) by 12 times and that of Fe(II) by four times in this system. A comparison of systems featuring only CYS or Fe(II) showed that the direct reduction of NB was not the main factor influencing its CYS-stimulated removal. The reduction in the concentration of CYS was accompanied by the generation of cystine (CY, the oxidized form of cysteine), and both eventually became stable. The introduction of CY also enhanced NB degradation due to NZVI, accompanied by the regeneration of CYS. This supports the claim that CYS can accelerate electron transfer from NZVI to NB, thus enhancing the efficiency of degradation of NB. 相似文献