共查询到20条相似文献,搜索用时 15 毫秒
1.
Xuwang Zhang Zhe Ji Yating Shao Chaochen Guo Hao Zhou Lifen Liu Yuanyuan Qu 《环境科学学报(英文版)》2020,32(11):45-53
Estuarine wetland is the transitional interface linking terrestrial with marine ecosystems, and wetland microbes are crucial to the biogeochemical cycles of nutrients. The soil samples were collected in four seasons(spring, S1; summer, S2; autumn, S3; and winter, S4) from Suaeda wetland of Shuangtaizi River estuary, Northeast China, and the variations of bacterial community were evaluated by high-throughput sequencing. Soil properties presented a significant seasonal change, including p H, carbo... 相似文献
2.
Zhixin Song Gangfu Song Wenzhong Tang Yu Zhao Dandan Yan Weilong Zhang 《环境科学学报(英文版)》2021,33(4):256-262
This study aimed to evaluate the spatial and temporal variations of molybdenum (Mo) in the downstream water body of a Mo mine during three hydrologic periods (wet, dry and medium seasons). The physical properties in Luhun Reservoir reflected seasonal variations in different hydrological periods. The redox potential (ORP) and dissolved oxygen (DO) increased in the dry season. The concomitant decrease in temperature (T), conductivity (COND) and total dissolved solids (TDS) were lowest in the wet season. The pH value did not change significantly during the three hydrologic periods. The distribution of Mo in the dry season was high in upstream and low in downstream areas, which was significantly different from that of the wet and medium seasons. The total Mo concentration in wet (150.1 µg/L) and medium season (148.2 µg/L) was higher than that in the dry season, but the TDS (288.3 mg/L) and the percentage dissolved Mo (81.3%) in overlying water was lowest in the wet season. There was no significant relationship between the dissolved Mo and the total Mo with TDS. In the dry season, the mean total Mo concentration was 116.3 µg/L, which was higher than the standard limit value (70 µg/L) for drinking water (US EPA-United States Environmental Protection Agency recommended value 40 µg/L). Non-point source pollution is the main characteristic of mining area pollution, which was closely related to rainfall. Thus, the Luhun Reservoir contains substantial Mo pollution, which was a significant concern given that it is used as a source of drinking and irrigation water. 相似文献
3.
《环境科学学报(英文版)》2024,36(1):728-740
Animal manures have been demonstrated to enhance antibiotic resistance in agricultural soils. However, little is known about the effects of plant-derived fertilizer on soil antibiotic resistome. Herein, metagenomic sequencing was used to investigate the effects of a plant-derived fertilizer processed from sugarcane and beet on soil antibiotic resistance genes (ARGs) in a soybean field along crop growth stages. ARG profiles in the soils amended by plant-derived fertilizer were compared with those in the soils amended by chicken manure. The abundance and diversity of total ARGs in the soils amended by plant-derived fertilizer were significantly (P < 0.05) elevated at the sprout stage, to a level comparable to that in the manured soils. Whereas, unlike chicken manure mainly introducing manure-borne ARGs to soil, the plant-derived fertilizer was indicated to mainly enrich multidrug resistance genes in soil by nourishing indigenous bacteria. ARGs with abundances in amended soils significantly (P < 0.05) higher than in unamended soils at the sprout stage of soybean were considered as enriched ARGs. Decrease in the abundance of the enriched ARGs was observed in both the amended soils from the sprout to the harvest. Network analysis further identified Proteobacteria and Bacteroidetes as the primary bacterial taxa involved in the temporal variation of the enriched ARGs in the soils amended by plant-derived fertilizer, while in manured soils were Firmicutes and Actinobacteria. As revealed by multivariate statistical analyses, variation of the enriched ARGs in the soils amended by plant-derived fertilizer was majorly attributed to the response of co-occurred bacteria to depleting nutrients, which was different from the failed establishment of manure-borne bacteria in the manured soils. Our study provided field-based evidence that plant-derived fertilizer stimulated the intrinsic antibiotic resistome, and proposed attention to the un-perceived risk since some clinically relevant ARGs originate and evolve from natural resistome. 相似文献
4.
Zhen-Chao Zhou Ze-Jun Lin Xin-Yi Shuai Ji Zheng Ling-Xuan Meng Lin Zhu Yu-Jie Sun Wei-Chun Shang Hong Chen 《环境科学学报(英文版)》2021,33(5):12-19
Antibiotic resistance genes (ARGs) as emergence contaminations have spread widely in the water environment. Wild fish may be recipients and communicators of ARGs in the water environment, however, the distribution and transmission of ARGs in the wild fish and relevant water environment were rarely reported. Here, we have profiled ARGs and bacterial communities in wild freshwater fish and relevant water in a peri-urban river using high-throughput qPCR and 16S rRNA gene sequence. A total of 80 and 220 unique ARG subtypes were identified in fish and water samples. Fish and water both showed significant ARG seasonal variations (P < 0.05). The highest absolute abundance of ARGs in fish and water occurred in summer (1.32 × 109 copies per g, on average) and autumn (9.04 × 106 copies per mL), respectively. In addition, the bipartite network analysis showed that 9 ARGs and 1 mobile genetic element continuously shared in fish and water. Furthermore, bacteria shared in fish and water were found to significantly correlate with shard ARGs. The findings demonstrate that bacteria and ARGs in fish and water could interconnect and ARGs might transfer between fish and water using bacteria as a spreading medium. 相似文献
5.
Dingyong Wang Yongguang Yin Shufang Zeng Xun Wang Wei Yuan Ji Luo Yong Cai Xinbin Feng Shuxiao Wang Huan Zhong Ping Li 《环境科学学报(英文版)》2022,34(9):1-10
Understanding atmospheric mercury (Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon (C), and nitrogen (N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C (from 237.0 ± 171.4 to 56.8 ± 27.7 µg/kg) and Hg/N (from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest (244.9 ± 55.7 µg/kg) and the lowest value in the alpine forest (151.9 ± 44.5 µg/kg). Further analysis suggests that soil Hg is positively correlated to C (r2 = 0.66) and N (r2 = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization. 相似文献
6.
Size-segregated ambient particulate matter (PM) samples were collected seasonally in suburban Nanjing of east China from 2016 to 2017 and chemically speciated. In both fine (< 2.1 µm, PM2.1) and coarse (> 2.1 µm, PM>2.1) PM, organic carbon (OC) accounted for the highest fractions (26.9% ± 10.9% and 23.1% ± 9.35%) of all measured species, and NO3− lead in average concentrations of water-soluble inorganic ions (WSIIs). The size distributions of measured components were parameterized using geometric mean diameter (GMD). GMD values of NO3−, Cl−, OC, and PM for the whole size range varied from < 2.1 µm in winter to > 2.1 μm in warm seasons, which was due to the fact that the size distributions of semi-volatile components (e.g., NH4NO3, NH4Cl, and OC) had a dependency on the ambient temperature. Unlike OC, elemental carbon (EC), and elements, NH4+, NO3−, and SO42− exhibited an increase trend in GMD values with relative humidity, indicating that the hygroscopic growth might also play a role in driving seasonal changes of PM size distributions. Positive matrix factorization was performed using compositional data of fine and coarse particles, respectively. The secondary formation of inorganic salts contributing to the majority (> 70%) of fine PM and 20.2% ± 19.9% of speciated coarse PM. The remaining coarse PM content was attributed to a variety of dust sources. Considering that coarse and fine PM had comparable mass concentrations, more attention should be paid to local dust emissions in future air quality plans. 相似文献
7.
Dongyou Wu Tenglong Shi Xiaoying Niu Ziqi Chen Jiecan Cui Yang Chen Xueying Zhang Jun Liu Mingxia Ji Xin Wang Wei Pu 《环境科学学报(英文版)》2022,34(4):53-65
The Asian Tropopause Aerosols Layer (ATAL) refers to an accumulation of aerosols in the upper troposphere and lower stratosphere during boreal summer over Asia, which has a fundamental impact on the monsoon system and climate change. In this study, we primarily analyze the seasonal to sub-seasonal variations of the ATAL and the factors potentially influencing those variations based on MERRA2 reanalysis. The ability of the reanalysis to reproduce the ATAL is well validated by CALIPSO observations from May to October 2016. The results reveal that the ATAL has a synchronous spatiotemporal pattern with the development and movement of the Asian Summer Monsoon. Significant enhancement of ATAL intensity is found during the prevailing monsoon period of July–August, with two maxima centered over South Asia and the Arabian Peninsula. Owing to the fluctuations of deep convection, the ATAL shows an episodic variation on a timescale of 7–12 days. Attribution analysis indicates that deep convection dominates the variability of the ATAL with a contribution of 62.7%, followed by a contribution of 36.6% from surface pollutants. The impact of precipitation is limited. The ATAL further shows a clear diurnal variation: the peak of ATAL intensity occurs from 17:30 to 23:30 local time (LT), when the deep convection becomes strongest; the minimum ATAL intensity occurs around 8:30 LT owing to the weakened deep convection and photochemical reactions in clouds. The aerosol components of the ATAL show different spatiotemporal patterns and imply that black carbon and organic carbon come mainly from India, whereas sulfate comes mainly from China during the prevailing monsoon period. 相似文献
8.
Xiaojuan Huang Guiqian Tang Junke Zhang Baoxian Liu Chao Liu Jin Zhang Leilei Cong Mengtian Cheng Guangxuan Yan Wenkang Gao Yinghong Wang Yuesi Wang 《环境科学学报(英文版)》2021,33(2):1-10
Following the implementation of the strictest clean air policies to date in Beijing, the physicochemical characteristics and sources of PM2.5 have changed over the past few years. To improve pollution reduction policies and subsequent air quality further, it is necessary to explore the changes in PM2.5 over time. In this study, over one year (2017–2018) field study based on filter sampling (TH-150C; Wuhan Tianhong, China) was conducted in Fengtai District, Beijing, revealed that the annual average PM2.5 concentration (64.8 ± 43.1 μg/m3) was significantly lower than in previous years and the highest PM2.5 concentration occurred in spring (84.4 ± 59.9 μg/m3). Secondary nitrate was the largest source and accounted for 25.7% of the measured PM2.5. Vehicular emission, the second largest source (17.6%), deserves more attention when considering the increase in the number of motor vehicles and its contribution to gaseous pollutants. In addition, the contribution from coal combustion to PM2.5 decreased significantly. During weekends, the contribution from EC and NO3? increased whereas the contributions from SO42?, OM, and trace elements decreased, compared with weekdays. During the period of residential heating, PM2.5 mass decreased by 23.1%, compared with non-heating period, while the contributions from coal combustion and vehicular emission, and related species increased. With the aggravation of pollution, the contribution of vehicular emission and secondary sulfate increased and then decreased, while the contribution of NO3? and secondary nitrate continued to increase, and accounted for 34.0% and 57.5% of the PM2.5 during the heavily polluted days, respectively. 相似文献
9.
《环境科学学报(英文版)》2023,35(3):524-532
The study of atmospheric polycyclic aromatic hydrocarbons (PAHs) in northeastern Tibetan Plateau with fragile ecological environment and complex atmospheric circulation system is blank. To understand the characteristics and sources of persistent organic pollutants in the atmosphere of the northeastern Tibetan Plateau, we monitored levels in the central Qilian Mountain. From 2016 to 2017, we collected 45-pair (particle + gas) samples using active air samplers to investigate the sources, transport paths, and their influencing factors. Sources of PAHs were analysed with a source diagnostic model, and atmospheric transport paths were calculated. The concentration range for ∑15PAHs was 439–4666 pg/m3, and the average was 2015 pg/m3. The PAHs in central Qilian Mountain are mainly low molecular weight (LMW) PAHs. Winter concentrations of PAHs were higher than those in summer. The transport of PAHs is mainly affected by westerlies, and there are seasonal differences. Source analysis showed that PAHs mainly came from coal and biomass combustion and vehicle emissions, with seasonal differences. This study clarifies the concentration and seasonal variation of PAHs in the northern Tibetan Plateau, which is conducive to understanding the atmospheric transport process and fate of pollutants. The background site of Qilian Mountains located in the Silk Road economic belt has the value and significance of long-term observation of pollutants. 相似文献
10.
Xuwang Zhang Zhaojian Song Qidong Tang Minghuo Wu Hao Zhou Lifen Liu Yuanyuan Qu 《环境科学学报(英文版)》2021,33(3):373-381
Nitrogen-containing organic pollutants (quinoline, pyridine and indole) are widely distributed in coking wastewater, and bioaugmentation with specific microorganisms may enhance the removal of these recalcitrant pollutants. The bioaugmented system (group B) was constructed through inoculation of two aromatics-degrading bacteria, Comamonas sp. Z1 (quinoline degrader) and Acinetobacter sp. JW (indole degrader), into the activated sludge for treatment of quinoline, indole and pyridine, and the non-bioaugmented activated sludge was used as the control (group C). Both groups maintained high efficiencies (> 94%) for removal of nitrogen-containing organic pollutants and chemical oxygen demand (COD) during the long-term operation, and group B was highly effective at the starting period and the operation stage fed with raw wastewater. High-throughput sequencing analysis indicated that nitrogen-containing organic pollutants could shape the microbial community structure, and communities of bioaugmented group B were clearly separated from those of non-bioaugmented group C as observed in non-metric multidimensional scaling (NMDS) plot. Although the inoculants did not remain their dominance in group B, bioaugmentation could induce the formation of effective microbial community, and the indigenous microbes might play the key role in removal of nitrogen-containing organic pollutants, including Dokdonella, Comamonas and Pseudoxanthomonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis suggested that bioaugmentation could facilitate the enrichment of functional genes related to xenobiotics biodegradation and metabolism, probably leading to the improved performance in group B. This study indicated that bioaugmentation could promote the removal of nitrogen-containing organic pollutants, which should be an effective strategy for wastewater treatment. 相似文献
11.
Hezhong Tian Lining Luo Xiaoxuan Bai Shuhan Liu Bobo Wu Wei Liu Yunqian Lv Zhihui Guo Shumin Lin Shuang Zhao Yan Hao Jiming Hao Kai Zhang Aihua Zheng 《环境科学学报(英文版)》2022,34(11):187-198
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries. 相似文献
12.
Guoying Wang Shiming Jia Ruihong Li Shangrong Ma Xuefu Chen Zhijun Wu Gaofeng Shi Xiuli Niu 《环境科学学报(英文版)》2020,32(9):58-64
Hydroxyl free radicals(OH radicals) play the main role in atmospheric chemistry and their involving reactions are the dominant rate determining step in the formation of secondary fine particulate matter and in the removal of air pollutants from the atmosphere.In this paper,we studied the seasonal variation characteristics of OH radicals during the daytime in Lanzhou and explored the potential formation mechanism of high concentration OH radicals.We found that the OH radicals in four seasons was ... 相似文献
13.
In this study, a denitrification (DN)–partial nitritation (PN)–anaerobic ammonia oxidation (Anammox) system for the efficient nitrogen removal of mature landfill leachate was built with a zone-partitioning self-reflux biological reactor as the core device, and the effects of changes in seasonal temperature on the nitrogen removal in non-temperature-control environment were explored. The results showed that as the seasonal temperature decreased from 34°C to 11.3°C, the total nitrogen removal rate of the DN-PN-Anammox system gradually decreased from the peak value of 1.42 kg/(m3?day) to 0.49 kg/(m3?day). At low temperatures (<20°C), when the nitrogen load (NLR) of the system is not appropriate, the fluctuation of high NH4+-N concentration in the landfill leachate greatly influenced the stability of the nitrogen removal. At temperatures of 11°C–15°C, the NLR of the system is controlled below 0.5 kg/(m3?day), which can achieve stable nitrogen removal and the nitrogen removal efficiency can reach above 96%. The abundance of Candidatus Brocadia gradually increased with the decrease of temperature. Nitrosomonas, Candidatus Brocadia and Candidatus Kuenenia as the main functional microorganisms in the low temperature. 相似文献
14.
Elisandra Hernández Jonathan Obrist-Farner Mark Brenner William F. Kenney Jason H. Curtis Edward Duarte 《环境科学学报(英文版)》2020,32(10):117-126
Sediments in Lake Izabal,Guatemala,contain substantial lead (Pb),zinc (Zn),and nickel (Ni).The lack of historical data for heavy metal concentrations in the sediments makes it difficult to determine the sources or evaluate whether inputs of metals to the lake have changed through time.We measured the relative abundances and concentrations of Pb,Zn,and Ni by X-Ray Fluorescence core scanning and by Inductively Coupled Plasma Optical Emission Spectrometry in three sediment cores to explore stratigr... 相似文献
15.
Xiaolin Guan Gaoxin Zhang Lingling Meng Mei Liu Liyuan Zhang Chuxuan Zhao Yingming Li Qinghua Zhang Guibin Jiang 《环境科学学报(英文版)》2023,35(9):111-122
Flame retardants(FRs) are ubiquitous in environment and biota and may pose harm to human health. In recent years, concern regarding legacy and alternative FRs has been intensified due to their widespread production and increasing contamination in environmental and human matrices. In this study, we developed and validated a novel analytical method for simultaneous determination of legacy and alternative FRs, including polychlorinated naphthalenes(PCNs), short-and middle-chain chlorinated paraffin... 相似文献
16.
Xianghui Cao Shouliang Huo Hanxiao Zhang Jiaqi Zheng Zhuoshi He Chunzi M Shuai Song 《环境科学学报(英文版)》2021,33(11):15-25
Emission intensity and climate change control the transport flux and fate of persistent organic pollutants (POPs) in multiple environmental compartments. This study applied a multimedia model (BETR model) to explore alternations in the spatio-temporal trends of concentrations and transport flux of benzopyrene (BaP), phenanthrene (Phe), perfluorooctane sulfonates (PFOS) and polychlorinated biphenyls (PCBs) in the Chaohu watershed, located in the lower reaches of the Yangtze River, China in response to changes in source emissions and climate. The potential historic and future risks of these pollutants also were assessed. The results suggest that current trends in concentrations and transport were similar to that of their emissions between 2005 and 2018. During the next 100 years, temporal trends and spatial patterns were not predicted to change significantly, which is consistent with climate change. Based on sensitivity and correlation analyses, climate change had significant effects on multi-media concentrations and transport fluxes of BaP, Phe, PFOS and PCBs, and rainfall intensity was the predominant controlling factor. Risk quotients (RQs) of BaP and Phe-in soil increased from 0.42 to 0.95 and 0.06 to 0.35, respectively, from 2005 to 2090, indicating potential risks. The RQs of the other examined contaminants exhibited little potential risk in soil, water, or sediment. Based on spatial patterns, it was inferred that the ecosystem around Lake Chaohu is the most at risk. The study provides insights needed for local pollution control of POPs in the Chaohu watershed. In addition, the developed approach can be applied to other watersheds world-wide. 相似文献
17.
Xin Liu Xiaowei He Chenglong Zhang Yifei Song Shuyang Xie Chengtang Liu Pengfei Liu Yuanyuan Zhang Yujing Mu Junfeng Liu 《环境科学学报(英文版)》2024,36(4):719-731
Peroxyacetyl nitrate(PAN) is an important photochemical pollutant in the troposphere,whereas long-term measurements are scarce in rural areas in North China Plain(NCP), resulting in unclear seasonal variations and sources of PAN in rural NCP. In this study, we conducted a 1-year observation of PAN during 2021-2022 at the rural NCP site. The average concentrations of PAN were 1.10, 0.75, 0.65, and 0.88 ppbv in spring, summer, autumn,and winter, respectively, with a 1-year average of 0.81 ± 0.60 p... 相似文献
18.
《环境科学学报(英文版)》2023,35(4):17-28
The Yellow River Basin (YRB) plays a very important role in China's economic and social development and ecological security. In particular, the ecosystem of the YRB is sensitive to climate change. However, the change of nutrient fluxes in this region during the past years and its main driving forces remain unclear. In this study, a hydrologic model R System for Spatially Referenced Regressions on Watershed Attributes (RSPARROW) was employed to simulate the spatio-temporal variations in the fluxes of total nitrogen (TN) and total phosphorus (TP) during the period of 2006-2017. The results suggested that the TN and TP loads increased by 138% and 38% during 2006-2014, respectively, and decreased by 66% and 71% from 2015 to 2017, respectively. During the period of 2006-2017, the annual mean fluxes of TN and TP in the YRB were in the range of 3.9 to 591.6 kg/km2/year and 1.7 to 12.0 kg/km2/year, respectively. TN flux was low in the upstream area of the Yellow River, and presented a high level in the middle and lower reaches. However, the flux of TP in Gansu and Ningxia section was slightly higher than that in the lower reaches of the Yellow River. Precipitation and point source are the key drivers for the inter-annual changes of TN loads in most regions of the YRB. While the inter-annual variations of TP loads in the whole basin are mainly driven by the point source. This study demonstrates the important impacts of climate change on nutrient loads in the YRB. Moreover, management measures should be taken to reduce pollution sources and thus provide solid basis for control of nitrogen and phosphorus in the YRB. 相似文献
19.
Drinking water quality deteriorates from treatment plant to customer taps, especially in the plumbing system. There is no direct evidence about what the differences are contributed by plumbing system. This study compared the water quality in the water main and at customer tap by preparing a sampling tap on the water main. The biomass was quantified by adenosine triphosphate (ATP) and the microbial community was profiled by 454 pyrosequencing. The results showed that in distribution pipes, biofilm contributed >94% of the total biomass, while loose deposits showed little contribution (< 2%) because of the low amount of loose deposits. The distribution of biological stable water had minor effects on the microbiocidal water quality regarding both quantity (ATP 1 ng/L vs. 1.7 ng/L) and community of the bacteria. Whereas the plumbing system has significant contribution to the increase of active biomass (1.7 ng/L vs. 2.9 ng/L) and the changes of bacterial community. The relative abundance of Sphingomonas spp. at tap (22%) was higher than that at water main (2%), while the relative abundance of Pseudomonas spp. in tap water (15%) was lower than that in the water from street water main (29%). Though only one location was prepared and studied, the present study showed that the protocol of making sampling tap on water main offered directly evidences about the impacts of plumbing system on tap water quality, which makes it possible to distinguish and study the processes in distribution system and plumbing system separately. 相似文献
20.
Olga Popovichev Elena Molozhnikov Sergey Nasonov Vladimir Potemkin Ivan Penner Marina Klemashev Irina Marinaite Ludmila Golobokov Stergios Vratolis Konstantinos Eleftheriadis Tamara Khodzher 《环境科学学报(英文版)》2021,33(9):49-64
Lake Baikal is the biggest reservoir of fresh water with unique flora and fauna; presently it is negatively affected by climate change, water warming, industrial emissions, shipping, touristic activities, and Siberian forest fires. The assessment of air pollution - related Baikal's ecosystem damage is an unsolved problem. Ship, based expedition exploring the Baikal atmospheric aerosol loading, was performed over the lake area in July 2018. We combine the aerosol near - water and vertical distributions over the Lake Baikal basin with meteorological observations and air mass transportation simulations. Lidar sounding of aerosol fields in the troposphere assesses the atmospheric background in the pristine areas and the pollution during fire-affected periods. Aerosol optical properties (scattering and spectral absorption) converted to the particle number size, black carbon (BC) mass, and Absorption Angstrom Exponent (AAE) provide the inside into aerosol characterization. Transport of industrial emissions from Krasnoyarsk and Irkutsk regions, and wildfire plumes from Republic of Yakutia relates the pollution sources to the increased concentrations of fine particle numbers, PM10 and BC mass over Southern and Northern/Central Baikal, respectively. The highest PM10 and BC are associated to the harbor and touristic areas of intensive shipping and residential biomass burning. Deposition estimates applied to aerosol data exhibit the pollution fluxes to water surface over the whole Baikal area. AAE marks the impact of coal combustion, residential biomass burning, and wildfires indicating the high pollution level of the Lake Baikal ecological system . 相似文献