首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this study, sediment organic phosphorus (OP) and organic carbon (OC) in Lake Taihu, China, as well as their relationships, were analyzed during the outbreak and decline of algal blooms (ABs) over a five-month field study. The results showed synchronous temporal changes in the sediment OP and OC contents with the development of ABs. In addition, there was a significant positive correlation between the sediment OP and OC (p < 0.01), suggesting simultaneous deposition and consumption during the ABs outbreak. The sediment OP and OC contents decreased significantly at the early and last stages of the ABs outbreak and increased at the peak of the ABs outbreak and during the ABs decline. These temporal variation patterns suggest that the sediment OC and OP contents did not consistently increase during the ABs outbreak, even though algae are an important source of organic matter in sediments. The depletion or enrichment of OC and OP in sediments may also depend on the scale of the ABs outbreak. The obtained results revealed significant differences in the sediment OC and OP contents between the months (p < 0.05). In addition, OP in the sediments was dominated by orthophosphate diester (phospholipids and DNA-P) and orthophosphate monoester during the ABs outbreak and decline, respectively. The active OC contents and proportions in the sediments in the ABs outbreak were significantly lower than those observed in the ABs decline period, demonstrating the significant impacts of the ABs outbreak and decline on the sediment OC and OP in Lake Taihu.  相似文献   

2.
    
Water quality sondes have the advantage of containing multiple sensors,extended deployment times,high temporal resolution,and telecommunication with stakeholder accessible data portals.However,sondes that are part of buoy deployments often suffer from typically being fixed at one depth.Because water treatment plants are interested in water quality at a depth of the water intake and other stakeholders (ex.boaters and swimmers) are interested in the surface,we examined whether a fixed depth of app...  相似文献   

3.
    
Pre-oxidation has been reported to be an effective way to remove algal cells in water, but the released algal organic matter (AOM) could be oxidized and lead to the increment in disinfection by-product (DBP) formation. The relationship between pre-oxidation and AOM-derived DBP formation needs to be approached more precisely. This study compared the impact of four pre-oxidants, ozone (O3), chlorine dioxide (ClO2), potassium permanganate (KMnO4) and sodium hypochlorite (NaClO), on the formation of nitrogenous (N-) and carbonaceous (C-) DBPs in AOM chlorination. The characterization (fluorescent properties, molecular weight distribution and amino acids concentration) on AOM samples showed that the characterization properties variations after pre-oxidation were highly dependent on the oxidizing ability of oxidants. The disinfection experiments showed that O3 increased DBP formation most significantly, which was consistent with the result of characterization properties variations. Then canonical correspondent analysis (CCA) and Pearson's correlation analysis were conducted based on the characterization data and DBP formation. CCA indicated that C-DBPs formation was highly dependent on fluorescent data. The formation of haloacetic acids (HAAs) had a positive correlation with aromatic protein-like component while trichloromethane (TCM) had a positive correlation with fulvic acid-like component. Pearson's correlation analysis showed that low molecular weight fractions were favorable to form N-DBPs. Therefore, characterization data could provide the advantages in the control of DBP formation, which further revealed that KMnO4 and ClO2 were better options for removing algal cells as well as limiting DBP formation.  相似文献   

4.
    
Ozonation pretreatment is typically implemented to improve algal cell coagulation. However, knowledge on the effect of ozonation on the characteristics and coagulation of associated algal organic matter, particularly cellular organic matter (COM), which is extensively released during algal bloom decay, is limited. Hence, this study aimed to elucidate the impact of ozonation applied before the coagulation of dissolved COM from the cyanobacteria Microcystis aeruginosa. Additionally, the degradation of microcystins (MCs) naturally present in the COM matrix was investigated. A range of ozone doses (0.1–1.0 mg O3/mg of dissolved organic carbon – DOC) and ozonation pH values (pH 5, 7 and 9) were tested, while aluminium and ferric sulphate coagulants were used for subsequent coagulation. Despite negligible COM removal, ozonation itself eliminated MCs, and a lower ozone dose was required when performing ozonation at acidic or neutral pH (0.4 mg O3/mg DOC at pH 5 and 7 compared to 0.8 mg O3/mg DOC at pH 9). Enhanced MC degradation and a similar pattern of pH dependence were observed after preozonation-coagulation, whereas coagulation alone did not sufficiently remove MCs. In contrast to the benefits of MC depletion, preozonation using ≥ 0.4 mg O3/mg DOC decreased the coagulation efficiency (from 42%/48% to 28%–38%/41%–44% using Al/Fe-based coagulants), which was more severe with increasing ozone dosage. Coagulation was also influenced by the preozonation pH, where pH 9 caused the lowest reduction in COM removal. The results indicate that ozonation efficiently removes MCs, but its employment before COM coagulation is disputable due to the deterioration of coagulation.  相似文献   

5.
    
Urban lake ecosystems are significant for social development, but currently we know little about the geographical distribution of algal community in urban lakes at a large-scale. In this study, we investigated the algal community structure in different areas of urban lakes in China and evaluated the influence of water quality parameters and geographical location on the algal community. The results showed that obvious differences in water quality and algal communities were observed among urban lakes in different geographical areas. Chlorophyta was the dominant phylum, followed by cyanobacteria in all areas. The network analysis indicated that algal community composition in urban lakes of the western and southern area showed more variations than the eastern and northern areas, respectively. Redundancy analysis and structural equation model revealed that nutrients and pH were dominant environmental factors that affected the algal community, and they showed higher influence than that of iron, manganese and COD Mn concentration. Importantly, algal community and density exhibited longitude and latitude relationship. In general, these results provided an ecological insight into large-scale geographical distributions of algal community in urban lakes, thereby having potential applications for management of the lakes.  相似文献   

6.
         下载免费PDF全文
Urban lakes were critical in aquatic ecology environments, but how environmental factors affected the distribution and change characteristics of algal communities in urban lakes of Xi'an city was not clearly. Here, we investigated the algal community structure of six urban lakes in Xi'an and evaluated the effects of water quality parameters on algae. The results indicated that the significant differences on physicochemical parameters existed in different urban lakes. The maximum concentration of total phosphorus in urban lakes was (0.18 ± 0.01) mg/L and there was a phenomenon of phosphorus limitation. In addition, 51 genera of algae were identified and Chlorella sp. was the dominant algal species, which was affiliated with Chlorophyta. Network analysis elucidated that each lake had a unique algal community network and the positive correlation was dominant in the interaction between algae species, illustrating that mature microbial communities existed or occupied similar niches. Redundancy analysis illustrated that environmental factors explained 47.35% variance of algal species-water quality correlation collectively, indicating that water quality conditions had a significant influence on the temporal variations of algae. Structural equation model further verified that algal community structure was directly or indirectly regulated by different water quality conditions. Our study shows that temporal patterns of algal communities can reveal the dynamics and interactions of different urban ecosystem types, providing a theoretical basis for assessing eutrophication levels and for water quality management.  相似文献   

7.
    
Lake mixing influences aquatic chemical properties and microbial community composition,and thus, we hypothesized that it would alter microbial community assembly and interaction. To clarify this issue, we explored the community assembly processes and cooccurrence networks in four seasons at two depths(epilimnion and hypolimnion) in a mesotrophic and stratified lake(Chenghai Lake), which formed stratification in the summer and turnover in the winter. During the stratification period, the epilimni...  相似文献   

8.
    
Modified clay (MC), an effective material used for the emergency elimination of algal blooms, can rapidly reduce the biomass of harmful algal blooms (HABs) via flocculation. After that, MC can still control bloom population through indirect effects such as oxidative stress, which was initially proposed to be related to programmed cell death (PCD) at molecular level. To further study the MC induced cell death in residual bloom organisms, especially identifying PCD process, we studied the physiological state of the residual Prorocentrum donghaiense. The experimental results showed that flocculation changed the physiological state of the residual cells, as evidenced by growth inhibition and increased reactive oxygen species production. Moreover, this research provides biochemical and ultrastructural evidence showing that MC induces PCD in P. donghaiense. Nuclear changes were observed, and increased caspase-like activity, externalization of phosphatidylserine and DNA fragmentation were detected in MC-treated groups and quantified. And the mitochondrial apoptosis pathway was activated in both MC-treated groups. Besides, the features of MC-induced PCD in a unicellular organism were summarized and its concentration dependent manner was proved. All our preliminary results elucidate the mechanism through which MC can further control HABs by inducing PCD and suggest a promising application of PCD in bloom control.  相似文献   

9.
         下载免费PDF全文
This work describes the development, optimisation and validation of an analytical method for the rapid determination of 17 priority pharmaceutical compounds and endocrine disrupting chemicals (EDCs). Rather than studying compounds from the same therapeutic class, the analyses aimed to determine target compounds with the highest risk potential (with particular regard to Scotland), providing a tool for further monitoring in different water matrices. Prioritisation was based on a systematic environmental risk assessment approach, using consumption data; wastewater treatment removal efficiency; environmental occurrence; toxicological effects; and pre-existing regulatory indicators. This process highlighted 17 compounds across various therapeutic classes, which were then quantified, at environmentally relevant concentrations, by a single analytical methodology. Analytical determination was achieved using a single-step solid phase extraction (SPE) procedure followed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The fully optimised method performed well for the majority of target compounds, with recoveries >71% for 15 of 17 analytes. The limits of quantification for most target analytes (14 of 17) ranged from 0.07 ng/L to 1.88 ng/L in river waters. The utility of this method was then demonstrated using real water samples associated with a rural hospital/setting. Eight compounds were targeted and detected, with the highest levels found for the analgesic, paracetamol (at up to 105,910 ng/L in the hospital discharge). This method offers a robust tool to monitor high priority pharmaceutical and EDC levels in various aqueous sample matrices.  相似文献   

10.
    
Wastewater reclamation and reuse has been proved to be an effective way to relieve the fresh water crisis.However, toxic contaminants remaining in reclaimed water could lead to potential risk for reuse, and the conventional water quality standards have difficulty guaranteeing the safety of reclaimed water.Bioassays can vividly reflect the integrated biological effects of multiple toxic substances in water as a whole, and could be a powerful tool for evaluating the safety of reclaimed water.There...  相似文献   

11.
    
Chlorine dioxide (ClO2),an alternative disinfectant to chlorine,has a superior ability to inactivate microorganisms,in which protein damage has been considered as the main inactivation mechanism.However,the reactivity of ClO2 with amino acid residues in oligopeptides and proteins remains poorly investigated.In this research,we studied the reaction rate constants of ClO2 with tryptophan residues in five heptapeptides and four proteins using stopped-flow or competi...  相似文献   

12.
    
We propose a novel sulfide-driven process to recover N2O during the traditional denitrification process. The optimum initial sulfide concentration was 120 mg/L, and the N2O percentage in the gaseous products (N2O+N2) was up to 82.9%. Moreover, sulfide involved in denitrification processes could substitute for organic carbon as an electron donor, e.g., 1 g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate. The accumulation of N2O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N2OR), which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N2OR. When the initial sulfide concentration was 120 mg/L, the N2OR activity was only 36.8% of its original level. According to the results of cyclic voltammetry, circular dichroism spectra and fluorescence spectra, significant changes in the conformations and protein structures of cyt c were caused by sulfide, and cyt c completely lost its electron transport capacity. This study provides a new concept for N2O recovery driven by sulfide in the denitrification process. In addition, the findings regarding the mechanism of the inhibition of N2OR activity have important implications both for reducing emissions of N2O and recovering N2O in the sulfide-driven denitrification process.  相似文献   

13.
14.
    
Kongsfjorden is known for its characteristic multi-layer water mass formed by the convergence of freshwaters from nearby glaciers and rivers and saline water from the Atlantic and Arctic. The distribution of polycyclic aromatic hydrocarbons(PAHs) in the water column of Kongsfjorden was investigated and their potential sources were analyzed. The total concentrations of 16 PAHs in the surface seawater and river water were in the range of 33.4-79.8 ng/L(mean 48.5 ng/L) and 2.3-201.4 ng/L(mean 126.1...  相似文献   

15.
    
Millions of people in poor areas are still under the threat of fluoride contamination.How to effectively separate fluorine in water is an important step to reduce the ecological risk.In this paper,we performed a systematic DFT calculation focused on the defluorination behavior between the LiAl-and MgAl-LDHs.The results indicated that the LiAl-LDHs exhibited high chemical activity before the defluorination,because of the better electronic structure.After the defluorination,the LiAl-LDHs with adso...  相似文献   

16.
  总被引:1,自引:0,他引:1  
Estuarine wetland is the transitional interface linking terrestrial with marine ecosystems, and wetland microbes are crucial to the biogeochemical cycles of nutrients. The soil samples were collected in four seasons(spring, S1; summer, S2; autumn, S3; and winter, S4) from Suaeda wetland of Shuangtaizi River estuary, Northeast China, and the variations of bacterial community were evaluated by high-throughput sequencing. Soil properties presented a significant seasonal change, including p H, carbo...  相似文献   

17.
         下载免费PDF全文
Anaerobic digestion (AD) with thermal hydrolysis (TH) pretreatment is a promising process for excess sludge treatment,while there lacks of the knowledge from full-scale process about the impact of sludge composition and characteristics on microbial community and performance.The sludge physiochemical indices,microbial community and performance data of four full-scale TH-AD plants were characterized,and their relationships was elucidated.The four plants were operated under almost similar total org...  相似文献   

18.
    
In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.  相似文献   

19.
    
The qualified finished water from water treatment plants (WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems (DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.  相似文献   

20.
    
In recent years, biochar has attracted considerable attention for soil quality improvement and carbon sequestration due to its unique physicochemical properties. However, the mechanism by which biochar application negatively affects the growth of crop seedlings has not been fully investigated. In this study, a hydroponic experiment was conducted to evaluate the response of rice, wheat, and corn seedlings to biochar application (CK, 0 g/L; BC1, 0.5 g/L; and BC2, 1.0 g/L). Compared with the CK treatment, the BC1 and BC2 treatments decreased the fresh shoot and root weights of rice and corn seedlings (P < 0.05), but there was no significant effect on wheat seedlings (P > 0.05). For the contents of nutrient elements in seedlings, both BC1 and BC2 treatments hindered the roots from absorbing Fe and Cu and increased the uptake of Ca and Mn. Compared with the CK treatment, the translocation factor (TF) values of Ca, Mn, and Zn were significantly decreased especially in rice seedlings (35.3%-36.8%, 68.7%-76.5%, and 29.8%-22.0%, respectively) under the BC1 and BC2 treatments, while only Mn was significantly decreased in wheat and corn seedlings (P < 0.05). Transmission electron microscope (TEM) analysis of root cross-sections showed that nano-sized biochar particles (10∼23 nm) were found in the root cells under BC2 treatment conditions. Our findings reveal that a large amount of biochar application can reduce nutrient absorption and translocation, and hinder rice, wheat, and corn seedlings, particularly rice seedling, in hydroponic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号