共查询到20条相似文献,搜索用时 15 毫秒
1.
Yangyang Gao Sha Wang Fengjun Yin Pin Hu Xingzu Wang Yuan Liu Hong Liu 《环境科学学报(英文版)》2021,33(3):227-235
The relatively low sensitivity is an important reason for restricting the microbial fuel cell (MFC) sensors’ application in low concentration biodegradable organic matter (BOM) detection. The startup parameters, including substrate concentration, anode area and external resistance, were regulated to enhance the sensitivity of MFC sensors. The results demonstrated that both the substrate concentration and anode area were positively correlated with the sensitivity of MFC sensors, and an external resistance of 210 Ω was found to be optimal in terms of sensitivity of MFC sensors. Optimized MFC sensors had lower detection limit (1 mg/L) and higher sensitivity (Slope value of the linear regression curve was 1.02), which effectively overcome the limitation of low concentration BOM detection. The essential reason is that optimized MFC sensors had higher coulombic efficiency, which was beneficial to improve the sensitivity of MFC sensors. The main impact of the substrate concentration and anode area was to regulate the proportion between electrogens and nonelectrogens, biomass and living cells of the anode biofilm. The external resistance mainly affected the morphology structure and the proportion of living cells of the anode. This study demonstrated an effective way to improve the sensitivity of MFC sensors for low concentration BOM detection. 相似文献
2.
Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with pos... 相似文献
3.
Microbial fuel cells (MFC) utilize microbes as catalysts to convert chemical energy to electricity.Inocula used for MFC operation must therefore contain active microbial population.The dye reduction-based electron-transfer activity monitoring (DREAM) assay was employed to evaluate different inocula used in MFCs for their microbial bioelectrical activity.The assay utilizes the redox property of Methylene Blue to undergo color change from blue to colorless state upon microbial reduction.The extent... 相似文献
4.
Feng Liu Lei Sun Jinbao Wan Liang Shen Yanhong Yu Lingling Hu Ying Zhou 《环境科学学报(英文版)》2020,32(3):252-263
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs. 相似文献
5.
Boya Zhou Liqiang He Shijian Zhang Rui Wang Luowei Zhang Mengliang Li Yu Liu Shaojun Zhang Ye Wu Jiming Hao 《环境科学学报(英文版)》2023,35(3):266-276
An increasing divergence regarding fuel consumption(and/or CO2 emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CL... 相似文献
6.
Tao Zeng Shuqi Li Weishun Lai Xinming Jiang Yashuang Wang Xinyi Cai Da Wang Shuang Song Min Liu 《环境科学学报(英文版)》2023,35(2):602-616
Herein, a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots (MSQDs) and 3D honeycomb-like conjugated triazine polymers (CTP) (namely, CTP-MSQD). The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property, while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators. The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI) reduction and H2 evolution, featured a rate of 0.069 min−1 and 1070 µmol/(hr∙g), respectively, which were 8 times than those of pure 3D-CTP (0.009 min−1 and 129 µmol/(hr∙g)). We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion. 相似文献
7.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化. 相似文献
8.
TiO2纳米孔阵列光催化废水燃料电池的性能研究 总被引:1,自引:0,他引:1
以模拟有机废水和实际有机废水为研究对象,以TiO2纳米孔阵列电极作光阳极,金属铂黑做阴极,设计了一种光催化废水燃料电池(PFC),用于有机废水处理和废水有机物化学能的综合利用.论文考查了不同实验条件下组成的电池体系的性能,表明基于TiO2纳米孔阵列光阳极的光催化废水燃料电池既能处理废水又能够表现出良好的电池性能,如以0.05mol/L乙酸为底物的光催化废水燃料电池,其开路电压1.16V,短路电流1.28mA/cm2,最大输出功率密度0.28mW/cm2. 相似文献
9.
Strongly acidic wastewater produced in nonferrous metal smelting industries often contains high concentrations of Ni(II), which is a valuable metal. In this study, the precipitation of Ni(II) from strongly acidic wastewater using sodium dimethyldithiocarbamate (DDTC) as the precipitant was evaluated. The effects of various factors on precipitation were investigated, and the precipitation mechanism was also identified. Finally, the nickel in the precipitates was recovered following a pyrometallurgical method. The results show that, under optimised conditions (DDTC:Ni(II) molar ratio = 4:1; temperature = 25 °C), the Ni(II) removal efficiency reached 99.3% after 10 min. In strongly acidic wastewater, the dithiocarbamate group of DDTC can react with Ni(II) to form DDTCNi precipitates. Further recovery experiments revealed that high-purity NiO can be obtained by the calcination of DDTCNi precipitates, with the nickel recovery efficiency reaching 98.2%. The gas released during the calcination process was composed of NO2, CS2, H2O, CO2, and SO2. These results provide a basis for an effective Ni(II) recovery method from strongly acidic wastewater. 相似文献
10.
Xiao Chen Yong Wang Jianyu Li Zhongheng Hu Ying Zhou Huayan Liu Hanfeng Lu 《环境科学学报(英文版)》2022,34(6):114-124
The preparation of highly active supported noble metal catalysts with a low noble metal loading has always been the ultimate goal of researchers working on catalysis. Hydrothermally treated Pt/Al2O3 (Pt/Al2O3-H) exhibits better catalytic activity than that (Pt/Al2O3-C) treated via the conventional calcination approach. At the high space velocity of 100,000 mL/(g∙hr), the temperature that correspond to 50% toluene conversion (T50) of Pt/Al2O3-H is 115°C lower than that of Pt/Al2O3-C, and the turnover frequency (TOF) value can reach 0.0756 sec−1. The mechanism by which the hydrothermal approach enhances Pt/Al2O3 activity has been investigated. The structure associated with the high catalytic activity of Pt nanoparticles (NPs) can be retained via hydrothermal treatment. Furthermore, the support is transformed to AlO(OH) with numerous surface hydroxyl groups, which in turn can facilitate the adsorption of toluene. And the synergistic effects of Pt NPs and AlO(OH) increases the contents of Pt in oxidation state and active oxygen, which are beneficial for toluene oxidation. 相似文献
11.
Black carbon (BC) is a promising sediment amendment, as proven by its considerable adsorption capacity for hydrophobic organic pollutants and accessibility, but its reliability when used for the removal of pollutants in natural sediments still needs to be evaluated. For example, the ageing process, resulting in changing of surface physicochemical properties of BC, will decrease the adsorption capacity and performance of BC when applied to sediment pollution control. In this study, how the ageing process and BC proportion affect the adsorption capacity of BC-sediment systems was modelled and quantitatively investigated to predict their adsorption capacity under different ageing times and BC additions. The results showed that the ageing process decreased the adsorption capacity of both BC-sediment systems, due to the blockage of the non-linear adsorption sites of BC. The adsorption capacity of rice straw black carbon (RC)-sediment systems was higher than that of fly ash black carbon (FC)-sediment systems, indicating that RC is more efficient than FC for nonylphenol (NP) pollution control in sediment. The newly established model for the prediction of adsorption capacity fits the experimental data appropriately and yields acceptable predictions, especially when based on parameters from the Freundlich model. However, to fully reflect the influence of the ageing process on BC-sediment systems and make more precise predictions, it is recommended that future work considering more factors and conditions, such as modelling of the correlation between the adsorption capacity and the pore volume or specific surface area of BC, be applied to build an accurate and sound model. 相似文献
12.
Nuan Yang Guoqiang Zhan Tingting Wu Yanyan Zhang Qinrui Jiang Daping Li Yuanying Xiang 《环境科学学报(英文版)》2018,30(4):216-224
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation. 相似文献
13.
In this study, a photocatalytic material consisting of ZnO and yttrium-doped ZnO (YZO) nanoparticles was obtained via a facile precipitation conducted under ambient pressure whereby crystalline ZnO was successfully doped with yttrium. YZO had a hexagonal wurtzite polycrystalline structure with smaller crystal and grain sizes than ZnO, which in turn meant larger specific surface area and pore volume. Chemical defects were also produced, which facilitated photocatalytic activity, because such defects can act as reaction centers. The optical band gap magnitude and the diamagnetic nature of YZO were also determined. The structural, crystalline, and chemical defects of YZO synergistically enhanced the photocatalytic degradation of carbaryl; indeed, the kinetic rate constant of this reaction catalyzed by YZO was 11.17 × 10−2 min−1 under natural sunlight irradiation, higher than the value measured for ZnO (8.68 × 10−2 min−1). Evidence thus indicates that yttrium-doping effectively modified some properties of ZnO nanoparticles so that YZO nanoparticles proved a suitable photocatalytic material for carbaryl degradation. 相似文献
14.
Peng Zhang Guanghua Lu Jianchao Liu Zhenhua Yan Huike Dong Ranran Zhou 《环境科学学报(英文版)》2021,33(6):307-316
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms, but little is known about their biodegradation in river sediments and their impact on microorganisms. We have set up the sterile and microbiological systems in the laboratory, adding 2-ethylhexyl-4-methoxycinnamate (EHMC), one of organic UV filters included in the list of high yield chemicals, at concentrations of 2, 20 and 200 μg/L, and characterized the microbial community composition and diversity in sediments. Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system (3.49 days) was much shorter than that in the sterile system (7.55 days). Two potential degradation products, 4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system. Furthermore, high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi, Acidobacteria, Bacteroidetes and Nitrospirae; Eukaryota_uncultured fungus dominated the sediment fungal assemblages. Correlation analysis demonstrated that two bacterium genera (Anaerolineaceae_uncultured and Burkholderiaceae_uncultured) were significantly correlated with the biodegradation of EHMC. These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities, which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks. 相似文献
15.
16.
Risk associated with heavy metals in soil has been received widespread attention.In this study,a porous biochar supported nanoscale zero-valent iron(BC-nZVI) was applied to immobilize cadmium(Cd) and lead(Pb) in clayey soil.Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process,and about 80% of heavy metals immobilization was obtained in BC-nZVI process.Addition of BC-nZVI could increase soil pH and organic matter(SOM).Cd or... 相似文献
17.
Modeling of spatial and temporal variations of ozone-NOx-VOC sensitivity based on photochemical indicators in China 下载免费PDF全文
Xiaohui Du Wei Tang Miaomiao Cheng Zhongzhi Zhang Yang Li Yu Li Fan Meng 《环境科学学报(英文版)》2022,34(4):454-464
Comprehensive air quality model with extensions (CAMx)-decoupled direct method (DDM) was used to simulate ozone-NOx-VOCs sensitivity of for May–November in 2016–2018 in China. Based on the relationship between the simulated ozone (O3) sensitivity values and the ratio of formaldehyde (HCHO) to NO2 (FNR) and the ratio of production rate of hydrogen peroxide (H2O2) to production rate of nitric acid (HNO3) (), the localized range of FNR and thresholds in different regions in China were obtained. The overall simulated FNR values are about 1.640–2.520, and values are about 0.540–0.830 for the transition regime. Model simulated O3 sensitivities or region specific FNR or thresholds should be applied to ensure the accurate local O3 sensitivity regimes. Using the tropospheric column FNR values from ozone monitoring instrument (OMI) satellite data as an indicator with the simulated threshold values, the spatial distributions of O3 formation regimes in China are determined. The O3 sensitivity regimes from eastern to central China are gradually from VOC-limited, transition to NOx-limited spatially, and moving toward to transition or NOx-limited regime from 2005 to 2019 temporally. 相似文献
18.
Yingwu Wang Qiang Lin Chi Wang Kai Li Xin Sun Xin Song Yangyan Gao Ping Ning 《环境科学学报(英文版)》2021,33(6):277-287
This work explored the influences of the drying and calcination temperatures on a Ce-Cu-Al trimetallic composite catalyst for the simultaneous removal of H2S and PH3. The effects of both temperatures on the structural features and activity were examined. The density functional theory method was used to calculate adsorption energies and further analyze their adsorption behavior on different slabs. Experiments revealed suitable drying and calcination temperatures to be 60 and 500°C, respectively. The capacity reached 323.8 and 288.1 mg/g. Adjusting drying temperature to 60°C is more inclined to form larger and structured grains of CuO. Rising calcinating temperature to 500°C could increase the grain size and redox capacity of CuO to promote performance. Higher temperatures would destroy the surface structure and lead to a crystal phase transformation, which was that the CuO and Al2O3 were gradually recombined into CuAl2O4 with a spinel structure. The exposed crystal planes of surficial CuO and CuAl2O4 were determined according to characterization results. Calculation results showed that, compared with CuO (111), H2S and PH3 have weaker adsorption strength on CuAl2O4 (100) which is not conducive to their adsorption and removal. 相似文献
19.
构建一种新型的三室微生物燃料电池(microbial fuel cells,MFCs)对重金属Cu污染的土壤进行修复,研究不同外阻条件下MFC的产电性能和土壤中Cu的迁移去除情况.结果表明,当外接电阻从100Ω增大到1000Ω时,三室MFC的输出电压从0.1V提高到0.4V,最大功率密度从1.10W/m3降低到0.71W/m3,且阴极极化现象也随外阻增大而更加显著.装置运行63d后,MFC外接电阻越大,近阳极土壤区的Cu的去除率越高,外阻为1000Ω的MFC近阳极土壤区的Cu去除率达到39.7%.通过改进欧共体标准(BCR)连续提取法分析重金属的形态,发现乙酸可提取态和可还原态为Cu迁移的两种主要形态.此外,土壤的性质也发生变化,pH值呈现由阳极到阴极逐渐升高的趋势,而电导率则相反.阴极电极的扫描电镜(SEM)和X射线衍射(XRD)结果也表明部分迁移到阴极的Cu(Ⅱ)被还原成单质Cu. 相似文献
20.
Weihong Qiu Heng He Bin Wang Dongming Wang Ge Mu Tao Xu Min Zhou Zi Ye Jixuan Ma Weihong Chen 《环境科学学报(英文版)》2023,35(3):101-111
The short-term impacts of urban air pollution on the platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) remain obscure.In this study,we included 3487 urban adults from the Wuhan-Zhuhai cohort.Individual inhalation exposure to air pollutants was estimated by combining participants’daily breath volume and ambient concentrations of six air pollutants (includingfine particulate matter (PM2.5),inhalable particulate matter(PM10),nitrogen dioxide (NO2... 相似文献