首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决周期来压的预测问题,首先对已知支架周期来压荷载曲线使用多重差异进化算法(MDE)进行拟合,将每重拟合形成的单一正弦曲线与上次差余曲线(Ei)再作差余曲线(Ei+1)。将这些Ei图通过分形几何的盒子法计算维度和相关系数(r)。将每条Ei的维度、r和支架相对距离(L)作为输入值,对应的Ei的周期Ti、缩放系数Si和纵移系数Di作为目标值,使用支持向量机(SVM)进行训练。通过对维度和r规律的研究得到拟设置支架处荷载各Ei的维度和r,带入训练后的SVM模拟得到Ei的Ti、Si和Di,进而得到Ei的表达式。将上述Ei求和即为所求拟设置支架处的周期来压荷载。实例分析说明,该种方法预测结果可以大体反映支架周期来压的基本形式和变化规律。  相似文献   

2.
为分析安全预测中时间序列的非平稳特性并提高预测精度,提出基于集合经验模态分解(EEMD)、相空间重构(PSR)及神经网络的预测建模方法。首先应用EEMD方法将时间序列分解成若干具有不同周期性或趋势性的分量,通过C-C方法计算各分量的最佳嵌入维数和延迟时间;然后分别进行相空间重构;再应用Elman神经网络对各分量进行训练并建立预测模型;最后将各分量预测结果叠加得到最终预测值。用该方法分析反映煤矿安全生产的关键性指标——煤炭生产百万吨死亡率。结果得到具有长期趋势性和周期性波动的5个分量,预测相对误差为-0.11%~0.20%;外推预测表明,中国煤炭生产百万吨死亡率将保持持续下降趋势,至2020年将下降到0.05以下。  相似文献   

3.
为了对矿井深部开采中煤层巷道的动压规律进行准确的预警预测,采用决策融合的多模型顶板来压预测方法。利用聚合经验模态分解方法(EEMD)对每个传感器监测数据进行模态分解,得到各子模型的多个固有模态函数(IMF)序列;根据模态函数的特点,对非线性序列运用支持向量机(SVM)模型,线性序列运用单整自回归移动平均(ARIMA)模型进行预测,再将各子模型中各种预测值合成重构得到各子模型的预测输出;通过统计识别模式将各子模型的预测数据进行归一化决策融合后,在同一个时空坐标系中表示出来。实际应用表明,用多模型融合的预测方法能实现采场顶板动态规律的远期、近期以及实时预测,并能很好地反映动压大变形规律,捕捉顶板灾害的预兆信息。  相似文献   

4.
为准确预测回采巷道顶底板移近量,减轻现场检测负担,提出一种PSO优化LSSVM算法的顶底板移近量预测方法。该方法综合考虑巷道埋深、直接顶厚度、煤柱宽度、松动圈尺寸、地质异常、巷道高度与宽度、顶底板岩性共9项主要指标因素,建立顶底板移近量预测指标体系;再利用PSO方法对LSSVM模型的核参数σ和惩罚因子f搜索寻优,得到最优核参数和惩罚因子分别为217.384 6和0.043 5;最后将优化后参数输入LSSVM中,结合现场实际参数进行训练学习,最终建立基于PSO-LSSVM算法的回采巷道顶底板移近量预测模型,进行了实例预测,并且采用方向正确性指数DA、平均绝对百分误差MAPE和希尔不等系数TIC三个指标对比评价了PSO-LSSVM模型的准确性。结果表明,PSO优化的LSSVM回采巷道顶底板移近量预测模型的DA指数、MAPE指数和TIC指数分别为0.900 0、9.063 7和0.064 7,该模型相较BP神经网络模型、单纯支持向量机模型和单纯最小二乘支持向量机模型更为真实、准确,且操作运行简便,可用于现场。  相似文献   

5.
边坡变形时序非线性判定及混沌预测研究   总被引:1,自引:0,他引:1  
以探讨边坡变形性质及混沌预测可行性为目的,基于混沌理论利用相空间重构技术对其变形时间序列进行混沌特征判定,试验显示变形系统具有混沌特性,可用混沌相关理论进行研究;基于混沌相空间重构技术,笔者构建了多种混沌预测模型进行混沌预计研究,分析各类模型的工程实际应用效果;针对单次监测时序预测精度较低的问题,提出累加时序预测方案,训练结果显示,短期预测精度变形累计值基本控制在5%以内,高程值预测相对误差均低于1%,预测精度较高,可以用于工程实际。  相似文献   

6.
嫩江水体溶解氧变化规律的混沌研究   总被引:1,自引:0,他引:1  
针对目前溶解氧研究主要是从生物、化学等方面开展,而对溶解氧自身变化规律的研究很少的特点,以嫩江干流浏园水文站测得的溶解氧质量浓度序列为例,首先进行相空间重构,应用自相关函数法确定出延迟时间、伪邻近点法确定出嵌入维数;然后应用主分量分析(PCA)方法对序列进行分析,表明该序列不是噪声序列而可能是混沌序列,通过计算Kolmogorov熵得出溶解氧质量浓度序列具有混沌特性的结论;最后应用基于关联度的局域加权线性回归预测法对该序列进行了混沌预测研究,得到了比较理想的预测结果,这为应用混沌理论进行溶解氧变化规律的研究提供了依据.  相似文献   

7.
为准确预测边坡变形,采用局部均值分解(LMD)与Elman神经网络相结合的方法,构建基于LMD-Elman的露天矿边坡变形的滚动预测模型。通过LMD将时序样本分解为多个分量,利用Elman神经网络对各分量进行滚动预测,再叠加各预测值重构最终理论预测值。以某露天矿边坡实际监测数据为例,进行仿真预测。结果表明:监测数据自身携带诱导边坡变形及失稳的重要信息,基于LMD-Elman的滚动预测能有效揭示边坡变形的波动性、趋势性和周期性特征;模型预测结果的平均绝对误差为0.056 8 mm,平均相对误差为2.756 8%,与单一Elman模型相比,预测精度显著提高。  相似文献   

8.
为了更好地掌握河水水质的变化规律,提出了一种基于变分模态分解(VMD)和最小二乘支持向量回归(LSSVR)的组合水质预测方法。通过VMD将水质指标分解成一系列有限带宽的模态分量以降低其非平稳性,然后对各分量分别建立LSSVR预测模型,并利用Pearson相关分析确定各分量输入变量,最后将各分量预测结果进行整合得到最终的水质指标预测值。以长江朱沱监测断面的高锰酸钾指数(CODMn)进行模型性能验证。结果表明,与其他现有模型相比,该方法具有更高的预测精度,为河水水质污染预控提供了有效技术支持。  相似文献   

9.
为保障煤矿井下采煤工作面安全生产,需要时刻掌握液压支架的可靠性情况,以便及时维护和保养,使液压支架可靠性维持在较高水平。基于应力-强度干涉理论,建立液压支架结构疲劳动态可靠性分析模型,并结合使用现场实测压力数据与液压支架生产企业再制造情况,对某常用液压支架进行动态可靠性评估。结果表明:该模型适用于对液压支架可靠性进行概率解释;综合机械化采煤工作过程中,顶板周期来压使液压支架承受的不稳定载荷服从双峰正态分布;用16Mn的P-S-N曲线代替Q460计算剩余疲劳强度,可以获得可靠度的保守数值。  相似文献   

10.
为了提高对空气质量预测的准确性,提出了一种基于混沌遗传算法(CGA)的BP神经网络改进方法。BP神经网络是目前应用最广泛的神经网络,但存在收敛速度慢和易陷入极小值的缺陷。该改进算法的基本思想是用混沌遗传算法优化BP神经网络的初始权值和阈值。混沌遗传算法结合了混沌运动的遍历性和遗传算法的反演性。将混沌变量加入遗传算法中,进一步提高了遗传算法的全局搜索能力和收敛速度;将混沌遗传算法优化后得到的最优解作为BP神经网络的初始权值和阈值。利用改进后的CGA-BP算法进行空气质量预测,结果表明,该方法对空气质量的预测效果明显好于单纯使用BP神经网络的预测效果。  相似文献   

11.
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。  相似文献   

12.
基于重构相空间充填体变形规律的灰色预测研究   总被引:4,自引:0,他引:4  
尾砂胶结充填体是非线性力学介质,其变形是能量耗散的复杂过程,必须研究其内在变形规律,才能正确预测采矿过程中充填体的稳定性.对不同配比的尾砂胶结充填体进行力学试验,得出了其应力-应变规律,对安庆铜矿高阶段充填体变形进行了监测.采用自适应滤波原理,研究基于重构相空间的测量数据去噪处理方法.用灰色理论研究充填体变形在相空间中相点距离的演变规律,建立了重构相空间的灰色预测模型.为减小预测误差,对预测结果采用残差模型修正.应用建立的模型,对安庆铜矿高阶段充填体变形进行分析,确定了采场合理回采周期.结果表明,充填体变形具有非线性混沌特性,不同配比的充填体表现出不同的非线性动力学行为,重构相空间能充分展示充填体变形的内在规律.  相似文献   

13.
深层隧道排水系统中的气爆危害将使竖井折板承受巨大的反向冲击荷载,严重威胁结构安全。为研究其荷载变化趋势,开展了长度比尺为1∶50的气爆模型水力试验,分析进气压、进气量、初始水深和联络管接入方式等关键因素的取值变化对冲击荷载的影响。结果表明:气爆对折板的反向冲击荷载可达正向水动力荷载的20倍以上且与进气压和进气量均呈正相关;当竖井内自由液面“紧邻”折板且联络管接入干区时,折板将大概率承受较大的冲击荷载。在试验研究基础上,分别拟合出了联络管接入湿区和干区时的最大冲击荷载预测式。研究成果可为折板型竖井正常安全运行以及结构设计优化提供技术支撑和理论指导。  相似文献   

14.
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。  相似文献   

15.
为有效、准确地预测回采工作面绝对瓦斯涌出量,基于变分模态分解(VMD)方法;差分进化(DE)算法和相关向量机(RVM)原理,提出回采工作面绝对瓦斯涌出量的VMD-DE-RVM区间预测方法;通过VMD方法将绝对瓦斯涌出量分解为若干固有模态分量并分析其局部特征,分别建立每个固有模态分量的RVM预测模型,并通过DE算法优化模型参数以提高预测精度;加权叠加各个分量的预测结果得到绝对瓦斯涌出量预测结果,并将其与经验模态分解方法所得结果对比。结果表明:应用该方法预测回采工作面瓦斯涌出量,能弱化瓦斯涌出量的局部特征,得到置信度为95%时涌出量预测区间有效度为100%,平均绝对误差为0. 096 m3/min,平均相对误差为2. 43%,预测精度有所提高。  相似文献   

16.
为分析和预测边坡变形,基于局域均值分解(LMD)、蝙蝠算法(BA)和极限向量机(ELM)的基本原理,建立边坡变形时序非线性预测模型。用LMD法将边坡变形时序样本分解为多组相对平稳的分量;用BA对ELM的参数进行全局寻优,构建BA-ELM预测模型,并对各分量进行滚动预测,经叠加各分量预测值,得到边坡变形最终预测结果。以某露天矿边坡变形实际监测数据为例,进行多模型对比分析。结果表明:LMD-BA-ELM模型预测的平均绝对误差为0.151 0 mm,平均相对误差为1.287 3%,运行时间为7.614 3 s;能够充分挖掘边坡变形的内部规律,有效降低其非线性特征。  相似文献   

17.
浅埋条件下的煤层开采,受上覆岩层移动影响而呈现与深埋煤层明显不同的特征.本文以神府矿区某矿1301工作面矿压观测为工程背景依托,应用“三量法”对工作面矿压显现规律进行研究,以工作面三个测区支架荷载和活柱下缩量为重点分析.研究表明:该工作面来压动载系数为1.5 -1.6,来压期间支架压力比平时大1- 13MPa;初次来压持续时间长,初次来压步距在55.9-56.3m,三个测区的周期来压步距为14.6 - 17.6m;且三个测区观测表明:中测区由于受工作面两侧煤壁影响较小,矿压显现程度同上下测区比较明显.  相似文献   

18.
以六盘水某煤矿工程背景为依托,利用相似理论建立物理模型,沿煤层走向从右向左进行开采,直接顶初次来压步距为46 m,基本顶初次垮落步距为18 m,基本顶呈现了5次周期来压,其周期来压步距为16. 2~21. 6 m,平均来压步距为19. 4 m;对工作面支架载荷进行监测,分析整理了液压支架的工作阻力值,并绘制了支架时间加权平均工作阻力与工作面推进距离的曲线关系图;通过实验现象分析结果和现场监测结果对比,得出两者之间是相互吻合的,工作面顶板周期来压强度不明显。  相似文献   

19.
为实现对采前工作面所处动力环境的客观、准确评价,选取9个直接影响工作面 动力环境的指标因素构建安全评价指标体系,建立基于核主成分分析(KPCA)和最小二乘 支持向量机(LSSVM)的工作面动力环境多因素耦合安全评价智能模型。首先根据KPCA理 论对评价指标施行简约化处理,剔除冗余信息,得出6个简约后的评价指标并输入LSSVM 模型中训练学习,最后得到评价模型。选取从平顶山矿区和大同矿区搜集到的30组工作 面历史数据,按照20∶10的比例对模型进行训练和测试,并将测试结果与其他四种模型 结果进行了对比,结果表明:KPCA方法可有效减少数据信息冗余,利用KPCA优化的 LSSVM模型可准确评价工作面动力环境,误判率为0。  相似文献   

20.
为准确掌握片岩隧道变形规律,基于隧道变形监测结果,利用核极限学习机构建隧道变形初步预测模型,通过遗传算法和蚁群算法进行优化处理,以保证模型参数的最优性,采用混沌理论对预测误差进行修正处理,利用M-K分析判断隧道变形趋势,并将趋势判断结果与预测结果对比.结果表明:通过递进优化处理,能逐步提高预测精度,且预测结果的相对误差...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号