首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
以江油市某以石油为原料生产甲醇的甲醇厂污水处理站污泥和分析纯苯酚为原料,通过富集培养,涂布平板法(Spread plate method)和平板划线法(Streak plate method)进行菌株分离,并采用不断加大苯酚质量浓度的方法对PD2菌株置于34 ℃、150 r/min的摇床上进行振荡驯化培养,得到以苯酚为唯一碳源,能降解高酚浓度的优势降酚菌.PD2菌株经过6代驯化后的试验表明: 该菌58 h对质量浓度为1 100 mg/L苯酚的降解率达98.6%,58 h对质量浓度为1 400 mg/L苯酚的降解率达94.3%,60 h对质量浓度为2 200 mg/L苯酚的降解率达83.6%.说明一定范围内提高苯酚的质量浓度可以提高PD2菌株降解苯酚的酶的活性.在不同温度下观察菌株的生长及对苯酚的降解情况,结果表明,该菌最佳降解苯酚温度为34 ℃.  相似文献   

2.
砜嘧磺隆降解菌的分离及特性研究   总被引:1,自引:1,他引:0  
为了进行砜嘧磺隆污染的生物修复,从农药厂废水排放口的污泥中,通过富集培养和平板稀释法,分离筛选出一株具有较强降解砜嘧磺隆特性的菌株N2.通过形态观察及生理生化试验对其进行鉴定,同时对其性质进行了初步研究.结果表明,该菌株为沙雷氏菌属(Serratia marcecens);该菌株降解砜嘧磺隆的最适温度为30~35 ℃,最适pH值为6.0,适宜接种量(预培养24 h,离心后用缓冲液洗涤的菌种OD_600值为0.897)为1.0%(V/V),在72 h内对20 mg/L的砜嘧磺隆降解率为93.71%;随砜嘧磺隆质量浓度升高,降解率下降.研究表明该菌株有很好的实际应用价值.  相似文献   

3.
从长期使用拟除虫菊酯类农药的土壤中筛选分离到1株甲氰菊酯降解菌CZ-1,对其降解特性和生物学特件进行了研究.经生理生化试验和16 S rDNA序列同源性分析,初步将菌株CZ-1鉴定为红假单胞菌属(Rhodopseudomonas sp.).GC对菌株CZ-1降解特性的研究表明,菌株CZ-1以共代谢方式降解甲氰菊酯.最佳降解条件为:pH=7.5,35℃.菌株CZ-1在最佳降解条件下,7 d对200 mg/L的甲氰菊酯降解率达75.36%.荫株CZ-1对植物促生的相关特性表明,培养24h,菌株CZ-1能够产生吲哚乙酸(IAA)(1.86±0.12)mg/L,ACC脱氨酶活性为(0.39±0.01)U/mg,能显著增加玉米的根长.  相似文献   

4.
从甲拌磷污染的土壤中驯化分离得到1株能够以甲拌磷为唯一碳源生长的革兰氏阴性细菌JZ1-黏着剑菌(Ensifer adhaerens sp.).最初,该菌株在24 h内对200 mg/L甲拌磷的降解率为42.2%.当驯化质量浓度为800 mg/L时,JZ1对200mg/L甲拌磷的降解率达到56.3%.以JZ1为出发菌经化学诱变和紫外诱变后获得菌株JZ1-II.JZ1-II对甲拌磷的降解作用明显增加:当盐酸羟胺质量分数为2%时,降解率提高至67.8%; 进一步经紫外照射45 s,降解率提高至83.2%.气相色谱法测定甲拌磷的降解动态,在JZ1-II的作用下,甲拌磷在12~24 h内下降迅速,24 h后降解率基本稳定在83%.采用氯化亚锡法测定培养基中总磷和无机磷的含量,分析甲拌磷的降解途径,甲拌磷的降解过程应为:甲拌磷(O,O-二乙基-S-乙硫基甲基二硫代磷酸酯)首先降解为二乙基磷酸,继而转变为磷酸.  相似文献   

5.
以桂林市上窑污水处理厂污泥脱水车间剩余污泥、上窑堆肥厂的堆肥堆料和桂林雁山镇森林土壤为菌源进行驯化,分离纯化并筛选得到2株能分别以壬基酚(NP)和双酚A(BPA)为唯一碳源和能源生长的降解菌株N-1和B-1。通过对菌株的16S r DNA序列同源性分析,初步鉴定N-1和B-1菌分别为Cupriavidus(贪铜菌属)、Acinetobacter(不动杆菌属)。通过两菌株分别降解NP和BPA的单因素实验,确定了降解动力学以及时间、温度、p H值对降解过程的影响。研究结果表明,细菌N-1,B-1的最佳初始目标污染物质量浓度为5~10 mg/L,降解40 h,N-1去除率可达49.63%,B-1去除率可达62.34%。细菌N-1对NP的去除半衰期t1/2为41.44~48.02 h;B-1对BPA的去除半衰期t1/2为35.23~37.33 h。细菌N-1,B-1的最佳降解温度均为30℃,最佳p H值均在6.5~7.5之间,即两种细菌在中温、中性条件下对NP和BPA降解效果最佳。  相似文献   

6.
为了明确一株蜡状芽孢杆菌(Bacillus cereus HY-2)对毒死蜱的降解特性,在基础培养基中定量添加毒死蜱和降解菌进行混合摇培,每12 h取样检测毒死蜱残留量和菌株生长量,研究了接种量、毒死蜱初始质量浓度和含盐量等因素对菌株降解毒死蜱的影响。结果表明,接种量为8%(体积分数,接种体密度为OD600=3.0)时对80mg/L毒死蜱的降解率最高,为53%。随毒死蜱初始质量浓度增加,菌株的生长受到不同程度的抑制,然而随着毒死蜱的降解,菌体的生长量迅速增加,培养液的p H值随降解菌的增殖而逐渐上升。毒死蜱初始质量浓度为40~150 mg/L时,随降解时间延长,毒死蜱的残留质量浓度逐渐下降;而毒死蜱初始质量浓度为200 mg/L时,毒死蜱质量浓度在降解过程中出现了先上升后下降、然后逐渐下降的现象。降解菌对Na Cl有较高的耐受度,当Na Cl质量浓度为20~70 g/L时,降解菌在60 h时对80 mg/L毒死蜱的降解率为27%~53%。  相似文献   

7.
邻苯二甲酸二甲酯(DMP)降解菌的分离鉴定及降解特性   总被引:1,自引:0,他引:1  
采用梯度压力驯化法从河流沉积物中筛选到一株能够以邻苯二甲酸二甲酯(Dimethyl Phthalate,DMP)作为碳源和能源生长的菌株,命名为THF-2,对其进行16S r DNA扩增、T/A克隆后测序,菌株THF-2被鉴定为恶臭假单胞菌(Pseudomonas putida)。研究了温度、初始p H值和表面活性剂对菌株THF-2降解DMP的效果,测定了邻苯二甲酸酯(PAEs)对菌株THF-2生长的影响,进而分析了菌株对不同质量浓度DMP的降解效果。结果表明,菌株在15~20℃对DMP具有良好的降解效果,最适温度为20℃;在p H=4~8范围,随p H值升高,DMP降解率增大,最佳p H值条件为8.0。在最适条件下,经过72h培养,菌株THF-2对质量浓度500 mg/L的DMP降解率达89.5%。不同表面活性剂对THF-2降解DMP的影响存在差异。添加质量分数1%非离子表面活性剂曲拉通X-100和吐温80,对THF-2降解DMP有一定的促进作用,但差异不显著(p0.05);当曲拉通X-100和吐温80添加质量分数为2%和3%时,降解作用受到抑制,降解率与添加量呈显著负相关(r=-0.98,p0.05)。添加离子型表面活性剂十二烷基硫酸钠(SDS)会抑制THF-2对DMP降解作用。DMP降解试验表明,当DMP质量浓度为100~500 mg/L时,THF-2对DMP的降解符合一级动力学方程模型,降解半衰期为13.92~27.08 h。因此,菌株THF-2可应用于低温地区及低温条件下DMP的生物处理。  相似文献   

8.
分别在山东泰安、聊城、菏泽、枣庄、潍坊长期施用涕灭威的农田采集土样,通过富集培养法筛选出1株降解涕灭威能力较高的细菌ZH-1,经生理生化与分子鉴定,该菌株为鞘氨醇杆菌(Sphingobac-terium sp.).为使该菌能更好地用于涕灭威残留污染治理,研究其生长和降解的适宜条件.结果表明.适合ZH-1菌株生长和降解的最佳碳源和氮源分别为蔗糖和硝酸钠;振荡(120 r/min)培养时该菌的适宜降解温度为30℃,且在低温时的生长和降解能力优于高温;培养基适宜pH值为7,且偏酸性条件下菌株的降解能力高于偏碱性条件;外加氮源硝酸钠的适宜质量分数为0.3%.在适宜培养条件下,恒温振荡培养5 d后菌株ZH-1对初始质量浓度为12.5 mg/L、25 mg/L、50mg/L、100mg/L、200mg/L的涕灭威的降解率分别为51%、58%、69%、50%、35%,对涕灭威的绝对去除量随着涕火威初始质量浓度的增加而增加.外加氮源质量分数低于0.3%时,菌株的生长量随外加氮源质量分数的增加而增加,因此可在实际应用中加入一定氮源以促进该菌的生长.  相似文献   

9.
二氯喹啉酸降解菌HN36的分离、鉴定及降解特性研究   总被引:6,自引:0,他引:6  
从生产二氯喹啉酸农药厂的污水处理池污泥中分离到1株二氯喹啉酸降解菌,命名为HN36。根据表型特征、生理生化特性和16SrDNA序列系统发育分析,鉴定为博德特氏菌属(Bordetellasp.)。该菌可以利用二氯喹啉酸作为唯一碳源和能源进行生长,二氯喹啉酸质量浓度为400mg/L时,48 h降解率为96.2%。降解二氯喹啉酸的最适pH值为7,最适温度为30℃,初始接种量在一定范围内(1.5%~5%)与降解率呈正相关。二氯喹啉酸初始质量浓度在100~400 mg/L时,降解效果较好。菌株HN36还能利用喹啉、苯酚、邻苯二酚和邻苯二甲酸进行生长,但不能利用萘和1,2-二氯苯。  相似文献   

10.
白腐菌Phlebia brevispora TMIC34596对林丹的酶促降解特性   总被引:1,自引:0,他引:1  
为了阐明白腐菌株Phlebia brevispora TMIC34596对有机氯杀虫剂林丹的酶促降解机理及规律,在实验室条件下,通过菌株的纯培养、超声波破碎和高速离心等过程,提取到胞内粗酶液和胞外粗酶液,并研究了胞内及胞外酶对林丹的降解特性、最佳降解条件及动力学参数等。结果表明,胞内酶起主要的降解催化作用,相同处理时间内对林丹的降解率是胞外酶的4~5倍。胞内酶降解林丹的酶促反应最适温度为35℃,最适p H值为5.0,最适条件下反应2 h后的林丹降解率为64.0%。胞内酶在25~40℃、p H值在4.0~6.5时能保持较高的降解活性,对林丹的降解率在50%以上。胞内酶降解林丹的米氏常数Km为1.30μmol/L,最大反应速率Vmax为1.18μmol/min,表明胞内酶对林丹有较强的亲和力,降解林丹速度较快。通过气相色谱-质谱分析,五氯环己醇和四氯环己二醇被鉴定为林丹的胞内酶代谢产物,表明胞内酶可通过连续的脱氯及羟基化作用将林丹转化为多羟基化产物,该途径不同于目前所报道的白腐菌对林丹的降解途径。  相似文献   

11.
热带地区石油污染土壤中降解菌的筛选   总被引:1,自引:0,他引:1  
通过对海南省儋州地区6个采集点的石油污染土壤样品的富集、分离、筛选,得到7株以石油烃为唯一生长碳源的细菌菌株.对其石油降解能力进行研究,结果表明,所有菌株均具有一定的石油降解能力.其中,s1、s4、s5、s6和s7菌株在筛选培养基中的石油降解率分别达到21.7%、93.0%、21.5%、25.0%和41.8%; 在土壤中的石油降解率分别为26.3%、39.1%、25.3%、31.4%和36.7%.对菌株形态和生理生化特性进行初步鉴定,s1菌株为柄杆菌属(Caulobacter); s4、s7菌株为假单胞菌属(Pseudomonas); s5、s6菌株为微球菌属(Micrococcus spp.).  相似文献   

12.
从山东胜利油田沿海滩涂石油污染水体中分离得到1株以原油为唯一碳源的降解菌E-2.通过对原油降解率的测定,发现菌株E-2对石油具有较强的降解能力.在条件初步优化下培养5d,其对原油的降解率在扣除自然降解部分后达到50.51%.E-2最适宜生长条件为:温度37℃,pH =7.5.当NaCl质量浓度为0~5g·L-1,原油质量分数为0.75%~1.5%时菌株E-2处于最佳生长状态.通过GC-MS分析,菌株E-2对原油中链烃C34~C38的部分降解最显著,对链烃C26 ~ C33也有一定的降解作用,表明E-2对长链烃类的降解具有明显的优势.菌株E-2与优势菌株HB-1按1∶1组成混合菌液,两种菌株仍能各自显著降解链烃碳源,同时对C16~C30的降解明显增强,反映了两菌对这一段碳链的协同降解效果.HB-1与E-2按1∶1混合,石油降解率提高到63.62%(单独HB-1菌株石油降解率为54.62%);HB-1与E-2按1∶3混合,其降解率为80.60%;HB -1与E-2按3∶1混合,降解率为81.83%.  相似文献   

13.
以正十六烷无机盐培养基为选择培养基,从武汉石化输油管附近土壤中筛选出1株高效降解长链烷烃的菌株,命名C3,对其进行生理生化、16S r DNA鉴定,C3为不动杆菌属。在正十六烷浓度为1 000 mg/L的无机盐培养基中接入4%的种子液,放入35℃、125 r/min摇床中震荡60 h,C3对正十六烷的降解率可达100%,其降解动力学拟合结果符合Monod模型。将C3应用到柴蜡的降解,96 h后,1 000 mg/L的柴蜡混合溶液的降解率能达到91%。C3产生的生物表面活性剂经鉴定为磷脂类活性剂,排油圈直径为80 mm,CMC约为35 mg/L,能将水的表面张力降低到20.79 m N/m。该菌株对长链烷烃的降解提供了良好的菌源。  相似文献   

14.
一株对硫磷降解菌的诱变复壮研究   总被引:2,自引:0,他引:2  
从长期施用对硫磷的土壤中筛选分离出1株能以对硫磷为唯一C源的菌株D10,研究微生物对有机磷农药的降解作用.鉴定表明,D10为不动杆菌属(Acinetobacter sp.)微生物,该菌株对农药对硫磷的最大耐受质量浓度为1 800 mg/L,但D10对农药对硫磷的降解率仅为25%.本文通过D10诱变复壮试验提高对硫磷降解率,结果表明,经紫外线(18 W)辐照10 s后,D10对农药对硫磷降解率提高至49.1%; 用0.8%盐酸羟胺溶液振荡处理30 min后,降解率为69.6%; 用60%土壤浸出液振荡培养48 h后,降解率为53.9%.对D10进行上述条件下的复合诱变,对硫磷降解率可达到82.8%.高效降解菌的选育为提高微生物对农药的降解奠定了基础.此外,通过改进有机磷农药萃取的前处理方法,使紫外分光光度法检测简便、精确,与气相色谱法检测结果拟合较好,具有一定实用价值.  相似文献   

15.
利用DDT为唯一碳源筛选、纯化得到DDT降解菌株DT1,通过形态特征、生理生化特性及系统发育分析鉴定为假单胞菌属细菌(Pseudomonas sp.)。通过单因子试验及差异显著性分析得到菌株DT1的最佳生长条件为37℃、初始p H值8.0、DDT初始质量浓度20mg/L、最适Na Cl质量浓度1 mg/L。通过正交试验优化菌株DT1的降解能力,最优方案为温度37℃、p H值9.0、DDT初始质量浓度30 mg/L,可将DDT降解率提高到60.85%。影响其降解能力的环境因素从主到次依次为温度、p H值、DDT初始质量浓度。  相似文献   

16.
细菌与真菌优化组合降解污水中氰化物研究   总被引:1,自引:0,他引:1  
研究降氰细菌与真菌组合对工业废水中氰化物的降解性能.将从电镀厂水样和活性污泥中分离出的8株降氰细菌与降氰真菌的悬浮液进行等体积混合,以降氰效果最佳的混菌组合为研究对象,研究其组成比例、废水温度、废水pH值、降解时间和摇床转速对降氰率的影响,并在试验得到的适宜降解条件下处理电镀厂实际含氰废水.结果表明,除2#细菌和真菌及9#细菌和真菌的组合外,其他混菌组合的降氰率均优于已筛选获得的单菌株,其中8#细菌与真菌组合的降氰率最高.该组合的适宜降氰条件为8#细菌悬浮液∶真菌悬浮液=3∶2(体积比)、34 ℃、pH=6.0、降解20 h、114 r/min转速.适宜降氰条件下,菌液∶废水∶细菌生长培养基=1∶1∶1(体积比)时,8#细菌与真菌组合对氰化物质量浓度为202 mg/L、42.9 mg/L、9.07 mg/L、1.57 mg/L和1.09 mg/L的5种实际废水的降氰率分别为84.85%、82.77%、80.37%、80.25%和79.82%.其中,氰化物初始质量浓度为1.57 mg/L和1.09 mg/L时,废水经混菌降解处理后的氰化物质量浓度低于0.5 mg/L,符合国家一级排放标准(GB 8978-88)(≤0.5 mg/L).研究表明,8#细菌与真菌混合菌的降氰率较高,在实际含氰废水处理中具有良好的应用前景.  相似文献   

17.
恶臭假单胞菌降解壬基酚的条件优化及产物分析   总被引:5,自引:1,他引:4  
从活性污泥中分离得到菌株X-8,经16S rDNA序列测定和分析比较,鉴定该菌株为恶臭假单胞菌.借助正交试验,对该菌株的生长条件和壬基酚(NP)降解条件进行了优化.在实验室利用X-8降解NP的适宜条件为:温度40 ℃,pH值7.0,降解时间26 h,培养基中NP质量浓度14.723 75 ng/霯.在此条件下,降解率可达75.28%.通过GC-MS检测,对菌株X-8的降解产物进行了分析,推测NP的降解产物为辛基酚和戊基酚.  相似文献   

18.
多环芳烃芘降解菌株的培养与降解特性研究   总被引:1,自引:1,他引:0  
采自浑河流域的底泥样品以多环芳烃芘为唯一碳源反复驯化,分离筛选出1株对多环芳烃芘具有降解作用的菌株P-D-1.经形态、生理生化特性及16S rDNA序列同源性分析,该菌株为革兰氏阳性菌.利用菌株的16S rDNA测序后的部分序列通过NCBI在线比对,与Genbank中枯草芽孢杆菌属的同源性高达99%.初步鉴定菌株为枯草芽孢杆菌属菌株(Bacillus subtilis).该菌株的最适生长条件为30℃,pH=7.0.采用高效液相色谱(HPLC)对其降解特性及培养条件进行优化,研究不同碳源、氮源、氯化钠质量浓度和通气量对多环芳烃芘降解的影响.结果表明,芘的初始质量浓度为75 mg·L-1时,在以蔗糖为碳源,酵母膏为氮源,氯化钠质量浓度为0.02g·mL-1,在250mL三角瓶中加入100 mL培养基状况下,该菌株的生长效果最佳,对多环芳烃芘的降解率达到82.6%.  相似文献   

19.
为准确反映乐果UV-TiO2光催化液对环境生物的毒性作用,以乐果敏感菌株LGX9为受试对象,研究了TiO2、H2O2、Fe2+、通入空气、初始pH值等因素对乐果UV-TiO2光催化液降解率及抑菌率的影响规律。结果表明,当乐果初始质量浓度为200 mg/L、反应温度为30℃时,在反应体系TiO2质量浓度1.0 g/L、H2O2浓度0.025 mol/L、Fe2+浓度0.002 mol/L,且以3.5 L/min通入空气、初始pH值为1的条件下,反应1 h后,乐果降解率为92.70%,对LGX9菌株生长已无抑制作用。研究表明,利用乐果敏感菌株LGX9可以有效反映乐果光催化降解液对环境的毒性作用。  相似文献   

20.
复合菌系RXS中木质纤维素降解酶类分析   总被引:1,自引:0,他引:1  
复合菌系RXS能分泌多种木质纤维素降解酶,为探究这些酶在木薯渣降解中的作用,对RXS的培养时间、酶作用的温度和pH值,以及添加金属离子对酶活性和降解效果的影响进行了研究。结果表明,在培养48 h后,木聚糖酶(Xylanase)、滤纸酶(FPAase)和内切葡聚糖酶(CMCase)酶活性均达到最大值(分别为56.02 U/m L、3.14U/m L和6.78 U/m L),pH=6.0(FPAase和Xylanase的最适pH值)、温度为55℃(FPAase和CMCase酶活性最高)条件下,RXS酶液处理可使木薯渣的失重率达到18.78%,纤维素和半纤维素质量分数分别由31.46%和20.19%下降到22.12%和12.23%。添加Cu~(2+)有效地抑制了酶液中FPAase和Xylanase的酶活性,木薯渣几乎不降解,纤维素和半纤维素组分质量分数基本不发生变化;分别添加Co~(2+)和Zn~(2+)时,对3种酶均有一定程度的抑制,木薯渣失重率仅为3.29%和4.70%;分别添加Fe~(2+)、Mg~(2+)时,FPAase酶活性被抑制,Xylanase与CMCase共同降解底物,木薯渣失重率分别达12.77%和15.81%,纤维素和半纤维素质量分数明显降低。研究表明,Xylanase与CMCase是复合菌系中降解木薯渣的关键酶,其协同作用可使木薯渣有效降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号