首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为了确定大断面掘进工作面压入式风筒的最佳安设高度,采用数值模拟方法分别模拟了风筒中心距底板6 m、4.5 m、3 m、2 m以及风筒安设于洞室顶部时,通风20 min后爆破炮烟(CO)的稀释效果,并求解了各种风筒布置情况下不同断面的通风死区比例。结果表明,通风排烟效果最差的情况为风筒固定于侧帮距底板6 m时,其次为风筒固定于侧帮距底板4.5 m时,再次为风筒固定于顶部中央时,风筒固定于侧帮距底板2 m时CO在巷道内的呼吸带高度沿程浓度分布与风筒距底板3 m时差别不大,但风筒中心距底板2 m时容易造成掘进工作面上隅角炮烟和粉尘的积聚。因此,大断面掘进工作面压入风筒最佳安设高度为3 m。  相似文献   

2.
隧道集中排烟系统的排烟风量是影响火灾烟气抽排效果的关键参数.量化评价烟气抽排效果有利于排烟风机的优化选型.基于FDS的火灾燃烧过程的化学反应式得到隧道火灾烟气的质量生产速率,提出了排烟效率和排烟效能两个表征集中排烟系统烟控能力的计算公式.用基于大涡模拟的FDS软件对隧道火灾烟气进行数值模拟计算.对比研究表明,随着排烟风量的增大,机械排烟效率增大,机械排烟效能反而降低.风机排烟风量增大使多个排烟阀处发生吸穿现象,但风流短路并未降低整个排烟系统的排烟效率.根据研究结果给出了合理的风机排烟风量设计区间,确定三阳路道路隧道集中排烟系统的最佳排烟风量为170 m3/s,对应的排烟效率为96.3%.  相似文献   

3.
本文利用性能化设计方法,从数值模拟角度对北京工业大学体育馆比赛大厅内的烟气运动进行了论证分析,以确定防排烟系统的设计,使其达到有效性和经济性的统一.文中分析了可能的火灾场景并利用经验公式初步估算比赛大厅所需的排烟量为47.7889万m3/hr,然后通过CFD模拟的方法对排烟量为40万m3/hr、35万m3/hr、25万m3/hr和20万m3/hr,补风量为排烟量的50%(补风通过空调送风系统反转实现)时的烟气运动进行模拟.结果表明,在烟气控制系统的作用下火灾产生的烟气能够形成明显的分层现象且上部烟气的温度比较低,不超过60℃,在排烟量不小于25万m3/hr的时候,比赛大厅内的烟气能够被控制在能够对人员产生危害的高度以上.因此,本文最终的烟气控制系统的排烟量选择为25万m3/hr,补风量选择为12.5万m3/hr,能够达到最优化设计的目标.  相似文献   

4.
从火灾烟气蔓延及其控制效果出发,采用FDS6. 2构建东湖隧道侧向集中排烟模型,通过对不同排烟量下隧道内烟气蔓延范围、排烟效率、温度场、人员疏散微环境排烟效果指标进行定量分析,得到东湖隧道侧部集中排烟系统在20 MW火灾时合理排烟量为300 m3/s。研究表明,侧部集中排烟模式下,当风机排烟量大于有效控烟所需风量时,配以2. 69 m/s隧道断面风,风机排烟量越大对隧道内火灾烟气蔓延的控制效果越明显。  相似文献   

5.
地下开采矿山掘进工作面所需风量,按现行规定是分别按工作面作业人数、瓦斯涌出量、一次爆破炸药量(稀释炮烟)和风速这四个方面进行计算,取其最大值。但释稀炮烟的风量,计算公式多样,而且不同的公式计算结果也相差甚远,较为常用的公式计算出的数值大多偏大。延期电雷管的出现和巷道全断面一次爆破施工工艺的应用,因一次爆破药量较大而使得问题更为突出,岩巷最甚。特别是按1986年版《〈煤  相似文献   

6.
为明确复杂结构、多排烟系统联动作用下,地铁停车线区域火灾烟气扩散特性,优化停车线通风排烟策略,针对广州某停车线区域开展了火灾现场实验和数值模拟研究。首先,基于全尺寸火灾试验结果,获取停车线区域典型火灾场景下的烟气扩散和沉降特性,并测量停车线区域不同通风模式下的气流流速;随后,运用数值模拟方法对比多种排烟模式下的烟气控制效果,并分析隧道风机和射流风机排烟风量对烟气扩散特征的影响形式。研究结果表明:自然通风场景下,火灾烟气起火后180 s内即可进入区间隧道及配线隧道,而启动隧道风机排烟可以减缓烟气扩散速率和沉降速率,但隧道风速未达到临界风速时,无法控制烟气向外扩散;隧道风机排烟组合区间射流风机向停车线送风的工作模式是停车线区域最佳排烟模式,建议隧道风机采用2台60 m3/s风量风机,射流风机采用2台30 m3/s风量风机,可同时降低停车线区域、区间隧道及配线隧道区域的烟气扩散和沉降速率,延长各区域可用疏散时间。研究结果可用于指导停车线风机选型及排烟模式设计,提升停车线区域火灾烟气控制能力。  相似文献   

7.
为研究扁平大空间内烟气蔓延影响因素,通过FDS火灾模拟软件对上海某商业综合体的商场进行模型建立,利用计算机模拟,逐一研究了水喷淋,挡烟垂壁高度,排烟口大小、数量,补风方式、补风量对烟气蔓延的影响,通过对比得出结论:增加挡烟垂壁高度对烟气蔓延影响有限,而去除水喷淋对烟气蔓延速度及质量浓度影响最大,烟气蔓延至各测点时间最多加快超过100 s,各测点烟气单位长度消光率最多上升69.51%/m;减小补风量至50%与去除水喷淋对烟气分布影响效果相当,在进行防排烟设计优化时,应优先考虑水喷淋与补风量;此外排烟量保持不变,改变排烟口数量及大小对烟气影响主要体现为蔓延速度变化。  相似文献   

8.
为了研究不同隧道宽度对侧向排烟系统排烟效果的影响,基于FDS数值模拟分析方法,结合不同隧道宽度和排烟量对隧道拱顶温度、烟气层厚度及排烟效率等参数进行分析。结果表明:在相同边界条件下,隧道越宽,拱顶纵向温度衰减越剧烈,纵向方向烟气蔓延长度越长;在不同隧道宽度下,排烟量越大,侧向排烟效率越高;排烟效率受隧道宽度的影响较大,在相同排烟量下,随隧道宽度增加,各排烟阀排烟效率及总排烟效率均呈递减趋势,隧道宽度从10 m增至20 m,排烟效率降低了18个百分点左右;在隧道宽度为20 m时,不同排烟量下排烟效率均在50%左右,表明隧道宽度在20 m以上时排烟效果相对较差,建议隧道宽度大于20 m时不宜采用侧向排烟方案。  相似文献   

9.
为了优化迷你仓消防设计,确定最优机械排烟量及储柜布置方案,在充分实地调研基础上,总结迷你仓的特点及消防隐患,并运用火灾动力学软件FDS对迷你仓不同的火灾工况进行数值模拟,对能见度、烟气层高度以及温度等参数进行分析,不同机械排烟方案及储柜间距的计算结果显示:迷你仓内部蓄烟能力差,烟气沉降速度较快;常规排烟量烟气控制效果差,排烟量为120 m3/(h·m2)的排烟方案的烟气控制效果明显;当2排储柜之间的距离大于1.5 m时,可有效降低火灾的快速蔓延。  相似文献   

10.
吸穿现象的发生将降低隧道集中排烟效率。排烟口间距是影响烟气层吸穿的重要因素。以长22 m的1∶20缩尺寸集中排烟隧道模型为数值模拟研究对象。采用对称方式开启6个排烟口进行双向均衡排烟模式。比较了排烟口间距分别为3 m和2 m时的烟气蔓延范围、烟气层温度和厚度,分析了烟气层厚度、温度与排烟速率之间的关系。结果表明:排烟速率大到一定程度时会导致烟气层吸穿;排烟口间距越大,导致排烟口开始发生吸穿的排烟速率越小;同一排烟速率下,排烟口之间的间距越大,越远离火源的排烟口越容易发生吸穿。因此,为避免吸穿现象的发生,需选取合适的排烟速率及排烟口间距。  相似文献   

11.
为优化选择与确定最优控烟方式,最大限度地减少人员伤亡和财产损失,利用火灾场模拟软件FDS对南宁市某地下超市火灾烟气的运动过程进行数值模拟,分别探讨了自然排烟、机械排烟、喷水灭火系统、机械排烟与喷水灭火复合系统4种火灾场景下烟气的运动过程,揭示出不同场景下火灾烟气的运动演化规律.结果表明,与自然排烟相比,机械排烟对于降低CO(低0.21%)和CO2(低2.6%)体积分数效果明显,能有效阻止O2(高1.8%)体积分数与能见度降低(延缓120 s);喷水灭火系统能有效降低烟气温度(降低200℃),在一定程度上抑制O2(高1.0%)体积分数的降低;机械排烟与喷水灭火复合系统能有效降低CO(低0.24%)和CO2(低3.4%)体积分数及烟气温度(降低270℃),还能阻止O2(高3.2%)体积分数与能见度降低(延缓160s);机械排烟、喷水灭火系统均对地下超市火灾烟气蔓延有较强的阻碍作用,但每个独立系统的控烟效果远不及机械排烟与喷水灭火复合系统明显.  相似文献   

12.
应用火灾模拟软件PyroSim,对综合管廊电缆舱火灾进行数值模拟,讨论不同断面高宽比对火灾烟气流动、温度和排烟效果的影响。分析得到:舱内温度主要以烟气为载体,火源上部区域温度最高,越往两边温度越低;断面形状影响燃烧速率,高宽比越小燃烧速度越快,顶棚温度越低;距火源较近区域,随着高宽比的减小,温度衰减速率也减小,距火源较远区域,高宽比对温度衰减速率几乎没影响。排烟过程中,下部区域排烟效率高于上部区域且距离送风口越近排烟效果越好。高宽比对于排烟效率影响较大,高宽比越小,其整体排烟效率越高。  相似文献   

13.
为合理设置城市综合交通枢纽地下换乘大厅排烟口高度,基于Froude准则,搭建比例为1∶10的地下换乘大厅机械排烟-补风试验平台。利用平台和数值模拟方法,试验研究地下换乘大厅火灾烟气在3种不同热释放速率(HRR)及4种不同排烟量条件下的温度分布,并探究排烟口高度的5个数值所对应的排烟效率。结果表明:HRR是影响地下换乘大厅烟气温度的主要因素,HRR越高,顶棚烟气温度越高;排烟口高度对大空间排烟效率影响较小;烟气竖向温度分布在6 m高度处出现明显分层现象,就净空高度为10 m的换乘大厅而言,排烟口宜设置于顶棚以下2~3 m处,此工况下排烟效率较高。  相似文献   

14.
火灾烟气逆流长度是侧部重点排烟模式烟气控制有效性的关键判据。为探究相关因素对侧部双点排烟模式下火灾烟气逆流长度的影响,根据π定理,对相关因素进行量纲分析,推导出烟气逆流长度与火灾热释放速率、排烟口排烟速率、排烟口间距、排烟口面积、排烟口距隧道顶板高度、排烟口长宽比6个影响参数的无量纲函数关系式;通过数值模拟并对模拟数据拟合,确定烟气逆流长度与这6个影响参数的关系。结果表明,侧部排烟模式下,烟气逆流长度随火灾热释放速率增大而增大,随排烟口排烟速率、排烟口间距增大而减小,烟气逆流长度不受排烟口面积、距隧道顶板高度、长宽比的影响。进而建立了考虑侧部双点排烟作用且与数值模拟结果相吻合的烟气逆流长度无量纲计算公式。  相似文献   

15.
为改善大断面掘进巷道内通风除尘效果,针对龙王沟煤矿副斜井净断面积24.9 m2、供风量1 500 m3/min的情况,采用计算流体软件Fluent,建立长压短抽混合式通风条件下稳态离散相模型(DPM),研究压、抽风筒口相对位置和压抽风量配比对粉尘-风流耦合运移的影响。结果表明,当压入式风筒口到工作面距离为27.5 m,抽出式风筒口到工作面距离为5.0 m,压抽比为1.2时,龙王沟煤矿副斜井大断面综掘巷道内风流稳定,综合除尘效果最佳,模拟结果与现场实测结果基本一致。  相似文献   

16.
大空间建筑自然排烟烟流逆转现象理论分析   总被引:1,自引:0,他引:1  
为了研究不同强度逆向自然风对建筑自然排烟系统排烟效果的影响,以某音乐厅为例,理论分析并数值模拟2.5 m/s、10.0 m/s逆向自然风对该建筑自然排烟效果的影响。结果表明:理论分析结果与数值模拟结果相吻合,当自然排烟受2.5 m/s的逆向自然风影响时,烟囱效应产生的热压(8.76 Pa)克服自然风产生的逆向风压(3.00 Pa),烟气可以通过排烟窗排至室外。但当自然排烟受10 m/s的逆向自然风影响时,烟囱效应产生的热压(8.76 Pa)不足以克服自然风产生的逆向风压(48.00 Pa),烟气在逆向风的作用下出现烟流逆转。因此,大空间建筑采用自然排烟方式时应考虑烟流逆转现象,排烟窗应尽量避免迎主导风向侧布置。  相似文献   

17.
为了解多层建筑火灾的蔓延发展和烟气运动,应用大涡模拟(LES)方法对多层建筑火灾发生过程进行数值模拟分析,模拟不同工况下走廊和各楼层中火灾烟气运动和温度的变化情况.尤其针对内部含有竖井的多层建筑,考虑到烟囱效应对火灾发展和烟气蔓延的影响,分别设置自然排烟和机械排烟的实验工况,分析电梯间通风口在自然排烟和机械排烟状况下火灾的发展和烟气运动.通过分析温度和能见度数据,发现合理安排机械排烟能够争取更多人员逃生时间.对于多层建筑火灾中发生的回燃现象进行了原因分析.  相似文献   

18.
结合某过江盾构隧道,基于三维流体动力学模拟仿真软件平台,建立三维仿真模型,研究火灾发生在隧道盾构段典型区段时,排烟开口在火源上下游不同的分布模式时烟气层的温度场分布。通过分析模拟结果可知:随着火源上游排烟开口逐步增加,火源上游烟气逆流长度和蔓延速度都相对稳定而后又逐步增长,火源下游的烟气蔓延长度先减小而后又基本趋于稳定,下游烟气沉降高度则有所升高;火源位置处正上方温度则随着上游排烟开口的个数逐步增加而逐渐升高。而从其他的排烟开口变化模式模拟结果可知:随着排烟开口面积或者开口间距的逐步增大,烟气蔓延的速度先增加而后又逐步减小,且开口间距为30m左右时烟气蔓延速度相对较慢;排烟开口宽高比对烟气蔓延影响较小。所获得的结论将有助于相关类型工程的设计和管理。  相似文献   

19.
为优化选择水幕和机械排烟系统作用下最佳防排烟方式,运用FDS数值模拟方法探究排烟速率和水幕与排烟口间距对烟流分布的影响,并对11组模拟工况下排烟效率和烟气特征参数变化规律进行研究。结果表明:20 MW的火源功率下,排烟速率为60 m3/s、水幕与排烟口间距为12.5 m时,排烟效率较高且烟气特征参数满足安全要求,考虑防排烟的有效性和经济性,可选其为最优防排烟组合方式。研究结果对防排烟系统的设计具有指导意义。  相似文献   

20.
为了准确预测火灾烟气运动情况,基于SGS湍流模型与大涡模拟相结合的方法预测地下车库中火灾烟气运动规律,采用简单化学反应模型处理地下车库中小汽车火灾的复杂燃烧过程,采用P-1模型计算烟气运动过程中的热辐射传递。设定了5种不同的计算工况,采用数值计算的方法得出火场烟气、温度分布情况;对其中的部分工况进行了实体火灾实验,并与计算结果相对比。研究结果表明:开启机械排烟比只依靠自然排烟时火场温度上升快,但是在稳定燃烧阶段温度相对较低;当火源功率为2MW时,仅依靠自然排烟时火场能见度为2m,当火源功率为4MW时,考虑机械排烟时火场能见度为10m,低于规定值;数值计算和实验结果一致性较好,说明采用的计算模型合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号