首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).  相似文献   

2.
In the sector of residual municipal solid waste management an increasing attention is put towards the role of biological treatments like bio-drying and bio-stabilization in order to decrease the need of landfilling volumes. The literature shows a lack of information concerning the emission factor of pollutants released from these processes. The available data are generally spot characterizations of concentration and air flow-rate that are used together in order to assess the emission factors. This approach caused significant differences among the available data as the release of pollutants is not steady. This paper belongs to a group of six papers concerning a research on material and energy recovery in integrated waste management systems, developed by a network of five universities. The contribution of the University of Trento, focuses on the bio-drying process with the following targets: (a) developing an innovative low cost method of sampling/measurement able to take into account the dynamics of release of pollutants; (b) checking the efficiency of a bio-filter; (c) verifying the variability of generation of some pollutants; (d) generating emission factors. The research was developed using a bio-drying pilot plant. As a treatment of the process air, the bio-reactor was coupled with a bio-filter. The emissions were characterized using an original approach based on the adoption of two measurement chambers suitable for hosting passive samplers. The passive samplers allowed the characterization of VOCs, N(2)O, NH(3) and H(2)S. A bio-chemical model, useful for energy and mass balances, supported the interpretation of the presented bio-drying run.  相似文献   

3.
A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.  相似文献   

4.
This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached.  相似文献   

5.
This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.  相似文献   

6.
A decision-support model for determining the feasibility of a planned energy-from-waste (EfW) investment for an integrated waste management and energy supply system is presented. The aim is to present an easy-to-understand, inexpensive and fast-to-use tool to decision-makers for modelling and evaluating different kinds of processes. Special emphasis is put on forming the model and interpretation of the results of the example case. The simple integrated system management (SISMan) model is presented through a practical example of the use of the model. In the example the viability of the described system is studied by comparing five different cases including different waste-derived fuels (WDF), non-segregated municipal solid waste (MSW) being one of the fuel options. The nominal power output of the EfW plant varied in each case according to the WDF classification. The numeric values for two main variables for each WDF type were determined, the WDF price at the gate of the EfW plant and the waste management fee (WMF) according to the 'polluter pays' -principle. Comparison between the five cases was carried out according to two determinants, the WMF related to each case and the recovery rate related to each case. The numeric values for the constants and variables used in the calculations were chosen as realistically as possible using available data related to the issue. In the example of this paper, the mass-incineration solution ('pure' MSW as a fuel) was found to be the most viable solution for the described system according to the calculations. However, the final decision of the decision-makers might differ from this in the real world due to extra 'fuzzy' information that cannot be reliably included in the calculations. This paper shows that certain key values of modelled systems can be calculated using an easy-to-use tool at the very early stages of a larger design process involving municipal and business partners. The use of this kind of tools could significantly decrease the overall design costs of large systems in the long run by cutting out irrational system options at the very beginning of the planning.  相似文献   

7.
LCA as a decision-supporting tool in planning integrated municipal solid waste management is not, as yet, widely used in Italy. This paper presents a study concerning the application of the LCA methodology to support the development of the new waste management plan for the Bologna District. The main goal of the study was to show decision-makers at the political level the benefits obtainable with the use of LCA, in terms of the identification and quantification of the potential environmental impacts of different waste management strategies. The integrated waste management system of the Bologna District includes waste collection and transport, sorting, recycling, composting, incineration and landfilling. Three scenarios, referring to 2006 and assuming the presence of 950,000 inhabitants and the production of approximately 566,000 t of waste in the district, have been compared. A detailed model has been developed in order to capture effects related to the waste fraction from separated collection and to the different waste treatments. The discussion of the results has focussed in particular on the greenhouse effect and the acidification potential. On the basis of the results obtained, the analysis of an additional scenario characterised by a further increase in separated collection has been put forward.  相似文献   

8.
This paper examines the potential of integrated waste and utility power management over the mid-term planning horizon in Japan. Energy recovery and CO2 emission reduction were estimated under two situations: (1) energy recovery efforts within the current waste management/power generation framework and (2) integrated waste management with sewage treatment systems and electric power industries. Scenario simulation results showed that under the current policy framework it is not feasible to achieve large energy recovery and CO2 emission reduction, while the integrated waste management scenarios show the potential of large energy recovery which is equivalent to about an 18 million t-CO2 emission reduction. The utilization of dry wastes for power generation at existing fossil power stations is significant in achieving the result. We also consider the effects of the ‘CO2 emission per GW generated’ for electric power generation on the total CO2 emission reduction because it varies by country and assumptions selected. Although this research did not include an economic analysis, based on estimated CO2 emissions and energy recovery, the integrated scenarios indicate a large potential in countries that have high dependence of fossil power generation and relatively low power generation efficiency.  相似文献   

9.
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t?1 rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2-eq t?1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t?1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.  相似文献   

10.
This paper reports the main outcome of research to compare and assess the merits of alternative strategies for energy recovery from municipal solid waste downstream of material recovery for an Italian province. Strategies analysed are based on well-established combustion technologies available at the commercial scale in the Italian market in comparison with an innovative but not yet proven option of refuse derived fuel gasification and subsequent co-combustion of syngas in a combined cycle power plant. The comparison is made using mass and energy balances, environmental assessment and economic analysis. From an energetic point of view, the best strategy is the one based on the refuse derived fuel gasification, which, on the contrary, does not show interesting environmental results. In this perspective, the best results are from strategies based on a dedicated plant, particularly when unsorted residual waste collected downstream of material recovery is used. Finally, from an economic point of view, the strategy with gasification allows the highest revenues from the sale of energy.  相似文献   

11.
Each European Member State must comply with Directive 2000/53/EC recycling and recovery targets by 2015, set to 85% and 95%, respectively. This paper reports a shredder campaign trial developed and performed in Italy at the beginning of 2008. It turns out to be the first assessment about the critical aspects belonging to the Italian End-of-Life Vehicles (ELVs) reverse supply chain involving 18 dismantling plants, a shredder plant and 630 ELV representatives of different categories of vehicles treated in Italy during 2006. This trial aims at improving the experimental knowledge related to ELVs added waste, pre-treatment, part reuse, recycling and final metal separation and car fluff disposal. Finally, the study also focuses on the calculation of the effective Italian ELV recycling rate, which results equal to 80.8%, and auto shredder residue (ASR) characterization. According to the results obtained in this work, ASR still contains up to 8% of metals and 40% of polymers that could be recovered. Moreover, physical-chemical analysis showed a Lower Heat Value of almost 20,000 kJ/kg and revealed the presence of pollutants such as heavy metals, mineral oils, PCBs and hydrocarbons.  相似文献   

12.
As the waste industry continues to move from a disposal-based system to one based on a combination of recovery options, the need for information on the composition of waste increases and this is reflected by the amount of information on the physical composition of municipal solid wastes that is now available. However, there is far less information on the chemical composition of municipal solid waste. The results from a number of chemical surveys from Europe are compared and show a reasonable degree of agreement, but several problems were identified with the data. Chemical and physical compositional data are combined in a case study example to investigate the flow of key potential pollutants in an integrated solid waste management system that uses materials recycling, composting, incineration and landfilling. This case study has shown that an integrated waste management strategy diverts lead and cadmium away from composting and recycling to incineration, which effectively isolates these elements from the environment through efficient capture of the pollutants followed by secure landfilling or recycling of the residues. However, further work is needed to determine the distribution of mercury in incineration residues and its fate when the residues are landfilled.  相似文献   

13.
The SISMan (Simple Integrated System Management) decision-aid model is introduced in this paper. The SISMan model is used in a demonstration of evaluating the viability of adding an Energy-from-Waste (EfW) plant to an existing municipal energy supply system. The integrated system utilizes co-generation in heat and electricity production. The evaluation is carried out by calculating the energy and money flows for the integrated system and comparing the results to the original system values. No "competing technologies" to the EfW alternative are presented; the evaluation is carried out simply by comparing the original ("existing") system flows to the integrated system flows. The results show that in certain conditions it is feasible to integrate an EfW plant with the existing municipal energy supply system in Finland. However, the conditions for a viable integration may not be so easy to fulfill.  相似文献   

14.
Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km2 (628 people/km2). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capita weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.  相似文献   

15.
In Libya, as in many developing countries, little information is available regarding generation, handling and disposal of hospital waste. This fact hinders the development and implementation of hospital waste management schemes. The specific objective of this study is to present an appraisal of the current situation regarding hospital waste management in Libya. Procedures, techniques, methods of handling, and disposal of waste are presented, as well as the amounts and compositions of hospital waste. This research was conducted in the form of a case study. Fourteen different healthcare facilities in three cities, Tripoli, Misurata, and Sirt, all located in the northwestern part of Libya, were selected for investigation. The investigation showed that the hospitals surveyed had neither guidelines for separated collection and classification, nor methods for storage and disposal of generated waste. This deficiency indicates the need for an adequate hospital waste management strategy to improve and control the existing situation. The average waste generation rate was found to be 1.3 kg/patient/day, comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. Sharps and pathological elements comprised 26% of the hazardous waste component.  相似文献   

16.
This article presents a review of the current municipal solid waste (MSW) and domestic waste generation and recovery situation in Hong Kong and identifies the factors affecting the waste generation rates. The results show that before 1997, MSW and domestic waste generation rates were driven by population growth and growth in the gross domestic product, with the latter having the larger effect. But recent waste generation data show poor correlation between waste generation rates and economic and population figures due to the increase in recycling efforts in the community. The results are also reported of a small-scale survey to explore the public attitude to waste recovery. The results show that most domestic householders have developed habits to carry out separation of waste at source for recycling, but the amount of recyclables recovered was low.  相似文献   

17.
This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO2 emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO2 emissions was that commercial areas with many office-type businesses had the most effective CO2 emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO2 emissions per year was 444 Gg CO2 and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm3 of LNG.  相似文献   

18.
Journal of Material Cycles and Waste Management - This work presents a survey on the management of the home medical care waste (HMCW) from the municipality of Caruaru, an important medical and...  相似文献   

19.
Hospital waste management and toxicity evaluation: a case study   总被引:1,自引:0,他引:1  
Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day(-1)) and the other by estimating the number of waste bags produced each day (650 kg day(-1)). Furthermore, measurements of the EC(50) parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.  相似文献   

20.
This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号