首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, concentrations, distribution between different phases, transition along the Middle and Lower reaches of the Yellow River and possible sources of PAHs were assessed. Results demonstrated that the relative proportions of 15 PAHs in all stations of the main River were similar, with concentrations of benzo[a]pyrene all above drinking water standards in most of the stations sampled. PAHs concentrations in tributaries were higher than those in the corresponding sites in the main River. PAHs concentrations of suspended particles were mainly correlated with contents of total organic carbon. However, PAHs concentrations in sediments were mainly correlated to the volume of particles with size smaller than 0.01 mm. The distribution of PAHs in all media sampled indicated that sediments could act as a sink/source for PAHs in different sections and source analysis revealed that PAHs mainly originated from coal burning, although in some tributaries PAH inputs could come from combustion of petroleum.  相似文献   

2.
Ko FC  Baker J  Fang MD  Lee CL 《Chemosphere》2007,66(2):277-285
Polycyclic aromatic hydrocarbon (PAH) concentrations in 34 surface sediments along the Susquehanna River were investigated in 2000. The total concentrations of PAHs in the surface sediments of Lake Clarke, Lake Aldred, the upper Conowingo Reservoir, and the lower Conowingo Reservoir were 3.3+/-1.5 microg g-1 (n=9), 1.6+/-1.3 microg g-1 (n=4), 9.8+/-5.5 microg g-1 (n=7), and 4.0+/-1.2 microg g-1 (n=14), respectively. These represent the first comprehensive measurement of PAHs in Susquehanna River surface sediments. Overall, total PAH concentrations were relatively lower in Lake Aldred, which is more shallow and sloped, and significantly higher in the upper Conowingo Reservoir. The sediment PAH levels were related to river flow rates, which are indirectly correlated with the particle size of the surface sediments. Total PAH levels in all the studied sites were below the effects range median (ERM) of 44.8 microg g-1 with 38% (13 of the 34 sampling sites) exceeding the effects range low (ERL) of 4.02 microg g-1. Principal component analysis indicated that variations in the PAH compound patterns of each reservoir decreased from upstream to downstream, indicating that the surface sediments were mixed along the Susquehanna River. The PAH patterns in the lower Conowingo Reservoir sediments were a combination of those upstream sources. Source analysis using isomer ratios as indicators suggested that PAHs in the Susquehanna River surface sediment are derived from the combustion of fossil fuels such as coal and gasoline with coal as the major source of contaminants.  相似文献   

3.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

4.
Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K(OC) for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM.  相似文献   

5.
Simpson SL  Burston VL  Jolley DF  Chau K 《Chemosphere》2006,65(11):2401-2410
The usefulness of two surrogate methods for rapidly determining the bioavailability of PAHs in hydrocarbon-contaminated marine sediments was assessed. Comparisons are made between the PAHs accumulated by the benthic bivalve, Tellina deltoidalis, and the extractable-PAHs determined using a 6-h XAD-2 resin desorption method and a 4-h gut fluid mimic (GFM) extraction method. There were significant positive relationships between PAH bioaccumulation by the bivalves and sediment PAH concentrations. These relationships were not improved by normalising the sediment PAH concentrations to the organic carbon concentration. The average percentage lipid content of the bivalves was 1.47 ± 0.22% and BSAFs for total-PAHs ranged from 0.06 to 0.80 (kg OC/kg lipid). The XAD-2 and GFM methods both extracted varying amounts of PAHs from the sediments. Low concentrations of PAHs were extracted by the GFM method (0.2–3.6% of total-PAHs in sediments) and the GFM results were inadequate for generalising about the bioavailability of the PAHs in the sediments. The XAD-2 method extracted greater amounts of PAHs (3–34% of total-PAHs in sediments), however, the total-PAH concentrations in the sediments provided a better, or equally good, prediction of PAH bioaccumulation by T. deltoidalis. The results indicated that these methods required further development before they can be applied routinely as surrogate methods for assessing the bioavailability of PAHs in sediments. Future research should be directed towards lowering detection limits and obtaining comparative data for a greater range of sediment types, contaminant classes and concentrations, and organisms of different feeding guilds and with different gut chemistry.  相似文献   

6.
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.  相似文献   

7.
A total of 112 surface sediment samples covering virtually the entire Bohai Sea were analyzed for polycyclic aromatic hydrocarbons (PAHs), in order to provide the extensive information of recent occurrence levels, distribution, possible sources, and potential biological risk of these compounds in this area. Surface sediment samples were collected from the Bohai Sea using a stainless steel grab sampler. Sixteen PAHs were determined by a Finnigan TRACE DSQ gas chromatography/mass spectrometry. Diagnostic ratios, cluster analysis, and principal component analysis (PCA) with multivariate linear regression (MLR) were performed to identify and quantitatively apportion the major sources of sedimentary PAHs in the Bohai Sea. Concentrations of total PAHs in the Bohai Sea ranged widely from 97.2 to 300.7 ng/g (mean, 175.7?±?37.3 ng/g). High concentrations of PAHs were found in the vicinity of Luan River Estuary-Qinhuangdao Harbor, Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The three-ring PAHs were most abundant, accounting for about 37?±?5 % of total PAHs. The four-ring and five-ring PAHs were the next dominant ones comprising approximately 29?±?7and 23?±?3 % of total PAHs, respectively. Concentrations of acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are higher than Canadian interim marine sediment quality guideline values at most of the sites in the study area. Contamination levels of PAHs in the Bohai Sea were low in comparison with other coastal sediments in China and developed countries. The distribution pattern of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from petrogenic and pyrogenic sources. Further PCA/MLR analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion, and traffic-related pollution were 39, 38, and 23 %, respectively. Pyrogenic sources (coal combustion and traffic-related pollution) contributed 61 % of anthropogenic PAHs to sediments, which indicates that energy consumption could be a dominant factor in PAH pollution in this area. Acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are the three main species of PAHs with more ecotoxicological concern in the Bohai Sea.  相似文献   

8.
Xia XH  Yu H  Yang ZF  Huang GH 《Chemosphere》2006,65(3):457-466
The contamination of polycyclic aromatic hydrocarbons (PAHs) has become one of the major problems in the Yellow River of China. As the Yellow River is the most turbid large river in the world, it remains unknown to which extent the high suspended sediment content in the river may affect the fate and effect of PAHs. Here we report the effect of sediment on biodegradation of chrysene, benzo(a)pyrene and benzo(g,h,i)perylene with phenanthrene as a co-metabolism substrate in natural waters from the Yellow River. Biodegradation kinetics of the PAHs in the river water with various levels of sediment contents were studied in the laboratory by fitting with a biodegradation kinetics model for organic compounds not supporting growth. The results indicated that the biodegradation rates of PAHs increased with the sediment content in the water. When the sediment contents were 0, 4 and 10 g/l, the biodegradation rate constants of chrysene with the initial concentration of 3.80 microg/l were 0.053, 0.084 and 0.111 d(-1), respectively. Further studies suggested the enhanced biodegradation rate in the presence of sediment was caused by the following mechanisms: (1) the population of PAH-degrading bacteria in the water system was found to increase with the sediment content; the bacteria population on sediment phase was far greater than that on water phase during the cultivation process; (2) the sorption of PAHs on the sediment phase was well described by the dual adsorption-partition model. Although the sorption capacity of PAH per unit weight of sediment decreased with the increase of the sediment content, the amount of sorbed PAH increased with the sediment content; and, (3) the desorption of PAHs from the solid phase led to a higher concentration near the water-sediment interface. Since the bacteria were also attached to the interface, this resulted in an increased contact chance between the bacteria and PAHs.  相似文献   

9.
Marine culture is thriving in China and represents a major component of the regional economy in coastal zones, yet the environmental quality of many of those areas has never been studied. This paper attempts to investigate the quality status of Daya Bay, a key aquaculture area in China. The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in water and sediment samples of the bay. The total concentrations of 16 PAHs varied from 4228 to 29325 ng l(-1) in water, and from 115 to 1134 ng g(-1) dry weight in sediments. In comparison to many other marine systems studied, the PAH levels in Daya Bay waters were relatively high, and at six sites they were sufficiently high (> 10 microg l (-1)) to cause acute toxicity. The PAH composition pattern in sediments suggest dominance by medium to high molecular weight compounds, and the ratio of certain related PAHs indicate important pyrolytic and petrogenic sources. Further analysis showed that the distribution coefficient (KD) increased with the particular organic carbon content of sediments, consistent with the PAH partition theory. The organic carbon normalised distribution coefficient (K(oc)) also increased with the compounds' octanol/water partition coefficient (K(ow)), confirming the potential applicability of the linear free energy relationships in the modelling and prediction of PAH behaviour in marine environments.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) and induction of the P450 reporter gene system (RGS) for 6- and 16-h exposure periods were determined in organic extracts of Ulsan Bay (South Korea) sediments to assess the utility of this bioassay as a screening tool for PAH contamination. The sum of the concentrations of 23 individual PAHs in 30 sediment samples (sigma PAH) based on GC-MS analysis ranged from 0.05 to 6.1 micrograms/g dry wt. P450 RGS fold induction ranged from 4.0 to 320 micrograms/g based on benzo[a]pyrene toxic equivalents (BaPEq). P450 RGS BaPEq and the 'chemical BaPEq', defined as the sum of the products of individual PAH concentrations and pre-determined toxic equivalency factors, exhibited very strong positive correlations with sigma PAH (r2 > 0.90; P < 0.001). Fold induction did not increase (and in some cases decreased) after the optimal incubation period (6 h) for PAHs, indicating that other compounds known to induce the P450 RGS (e.g. chlorinated organics) were not present at levels effecting significant induction. This was supported by GC-ECD analysis where non-ortho and mono-ortho polychlorinated biphenyls (PCBs) known to be strong P450 RGS inducers were found to be at very low or non-detectable levels in samples with the highest P450 RGS responses. The profound difference in PAH profiles for the two most contaminated sites suggested that this assay is especially sensitive for selected PAHs with greater than four rings. Combined with previous results, the P450 RGS shows promise as a useful screening tool for predicting deleterious biological effects resulting from CYP1A1-inducing, sediment-associated chemicals, particularly high molecular weight PAHs.  相似文献   

11.
The contents of nonhydrolyzable organic matter (NHC) and black carbon (BC) were measured in soils and sediments from the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons (PAHs) were extracted respectively by Soxhlet and an accelerated solvent extraction device (ASE) using different solvents. In addition, sequential aqueous leaching at different temperatures was carried out. The PAH content extracted with the sequential three solvent ASE is two times higher than that using the Soxhlet extraction method. The relationship of the PAH content with the NHC content is very significant. The PAH concentrations measured at various temperature steps fit well to the Van't Hoff equation and the enthalpy was estimated. The investigation indicates that condensed organic matter such as kerogen carbon, aged organic matter, and BC is relevant for the extraction and distribution of native PAHs in the investigated field soils and sediments.  相似文献   

12.
Black carbon (BC; soot and charcoal) can be an extremely strong sorbent for organic compounds. In a previous study, sorption of d(10)-phenanthrene (d(10)-PHE) to BC in an unmodified contaminated sediment was found to be nine times less than that for BC isolated from this sediment. To find out the mechanism of this sorption attenuation (competition for BC sites between d(10)-PHE and native PAHs or blocking of BC sites by natural organic matter), we determined the effect on d(10)-PHE-BC sorption isotherms of additions of either PAHs or precipitated humic acid. Addition of humic acid did not significantly decrease BC sorption, whereas PAH additions (equal to the native PAH content in the original sediment) did, by about one order of magnitude. Therefore, competition between d(10)-PHE and the native PAHs could explain the whole attenuation of sorption to BC in unmodified sediments.  相似文献   

13.
Yim UH  Hong SH  Shim WJ 《Chemosphere》2007,68(1):85-92
To assess the contamination of polycyclic aromatic hydrocarbons (PAHs) in the marine environment of Korea, 117 sediment samples along the coast were collected and analyzed. This study provides perspectives on concentration ranges and on geographic distributions of PAHs. Sum of 16 PAHs concentrations are in the range of 8.80-18500 ng/g dry weight. Industrialized and urbanized region showed high level of PAHs contamination. When compared with nationwide monitoring results of USA and UK, concentration of total PAHs are in the order of UK>US>this study. Major PAHs sources inferred from diagnostic indices and statistical approach were both pyrogenic and petrogenic. In coastal and offshore sediments of Korea, 7.76% sites had a mean PAH ERL quotient >1.0, indicating the potential to cause adverse effects in sensitive species. Youngil Bay was recognized as highly contaminated with PAHs, and recommended to be managed with special plan.  相似文献   

14.
Sediment samples from three estuaries on the east coast of China were analyzed for persistent organic pollutants. Total PCB, PAH, and DDT concentrations in the sediments from Minjiang, Jiulongjiang, and Zhujiang estuaries ranged from 2 to 14 ng/g, 400 to 1500 ng/g, and 6 to 73 ng/g, respectively, in the sediments from these estuaries. The sources of PAH contamination were inferred from PAH compositions, with pyrogenic PAHs being the dominant source for Minjiang Estuary and petroleum related PAHs being the primary contributors to Jiulongjiang and Zhujiang estuaries. The high concentrations of DDT in the sediments from these estuaries were likely the result of widespread use of DDT in China in the 1960s and 1970s. Butyltin compounds were detected in the sediment from Jiulongjiang Estuary and Victoria Harbor, Hong Kong. Presence of butyltin compounds probably result from the shipping activities in these estuaries. Butyltin compounds were not detected in the sediments from Minjiang and Zhujiang estuaries. Contaminant concentrations were generally below levels expected to affect benthic organisms with the exception of DDTs.  相似文献   

15.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

16.
Polycyclic aromatic hydrocarbons in the sediments of the South China Sea   总被引:22,自引:0,他引:22  
Sixteen sediment samples, collected from the South China Sea, were analyzed for 11 parent polycyclic aromatic hydrocarbons (PAHs) using gas chromatography and gas chromatography-mass spectrometry. Total concentrations of the 11 PAHs studied in the sediments ranged from 24.7 to 275.4 ng/g with a mean of 145.9 ng/g dry sediment. PAH concentrations displayed a consistent distribution trend with the sediment organic carbon content. The linear regression analysis showed that the total concentration of PAHs in the sediment was significantly correlated to the sediment organic carbon content with a correlation coefficient of 0.735 (n=16). Special PAH compound ratios, such as phenanthrene/anthracene and fluoranthene/pyrene, were calculated to evaluate the relative importance of different origins. The collected data showed that pyrolytic input from anthropogenic combustion processes was predominant at almost all the stations investigated. Only one station, located in the proximity of oil wells, appeared to be contaminated predominantly by petrogenic input. Three anthropogenic PAHs, i.e. pyrene, benzo[a]pyrene and benzo[e]pyrene, exhibited similar distribution patterns in the studied area, implying that these compounds possess identical sources. However, perylene did not entirely follow the distribution trend of the three PAHs, suggesting that the sediment perylene probably derived from other sources such as in situ biogenic origins. Dibenzothiophene, a sulfur heterocyclic aromatic compound, was also measured in this study.  相似文献   

17.
18.
Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability.  相似文献   

19.
The concentrations of total polycyclic aromatic hydrocarbons (sigmaPAHs) and 15 individual PAH compounds in 20 surface sediments collected from four mangrove swamps in Hong Kong were analysed. sigmaPAH concentrations ranged from 356 to 11,098 ng g(-1) dry weight with mean and median values of 1992 and 1,142 ng g(-1), respectively. These values were significantly higher than those of marine bottom sediments of Hong Kong harbours, suggesting that more PAHs were accumulated in mangrove surface sediments. The concentrations of sigmaPAHs as well as individual PAH compound varied significantly among mangrove swamps. The swamps heavily polluted by livestock and industrial sewage, such as Ho Chung and Mai Po, had much higher concentrations of total PAHs and individual PAH than the other swamps. The PAH profiles were similar among four mangrove swamps, and were dominated by naphthalene (two-ring PAH), fluorene and phenanthrene (three-ring PAH). The mangrove sediments had higher percentages of low-molecular-weight PAHs. These indicated that PAHs in mangrove sediments might originate from oil or sewage contamination (petrogenic input). Ratio values of specific PAH compounds such as phenanthrene/anthracene and fluoranthene/ pyrene, were calculated to evaluate the possible source of PAH contamination in mangrove sediments. These ratios varied among samples, suggesting that mangrove sediments might have a mixed pattern of pyrolytic and petrogenic inputs of PAHs. Sediments collected from Ho Chung mangrove swamp appeared to be more dominated by pyrolytic input while those from Tolo showed strong petrogenic contamination.  相似文献   

20.
黄河兰州段、白银段重金属污染的磁学指标初探   总被引:2,自引:0,他引:2  
对黄河兰州段、白银段的水样及沉积物样进行了环境磁学研究,并对部分样品进行了重金属含量分析.结果表明,污水的输入对河水的磁化率产生影响,且磁化率变化因污染源而异;亚铁磁性矿物主导了沉积物的磁性特征.重金属含量与磁参数的相关性均不显著,但在黄河白银段东大沟以下河段,重金属含量与非磁滞剩磁(ARM)、ARM/SIRM(SIRM为饱和等温剩磁)、频率磁化率(Xfd%)等磁参数有同步增强趋势,可能与细磁性晶粒对重金属的吸附作用有关.综合分析磁参数与重金属含量变化发现,河水Xfd%和ARM/SIRM可作为衡量部分重金属污染程度的参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号