首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rao JV 《Chemosphere》2006,65(10):1814-1820
The euryhaline fish, Oreochromis mossambicus was exposed to sub-lethal concentration (1.15 mg l(-1)) of a organophosphorus insecticide, monocrotophos (MCP) for 30 days and allowed to recover for seven days. Alanine aminotransferase (ALAT), aspartate aminotransferase (AAT), acid phosphatase (AcP), alkaline phosphatase (ALP), glycogen, lactate dehydrogenase (LDH), Reduced glutathione (GSH), gluthathione-S-transferase (GST) and acetylcholinesterase (AChE), were assayed in plasma and different tissues at regular intervals of day -3, -7, -15, -30 and after recovery period of seven days. The ALAT and AAT activities were increased in plasma and kidney, where as liver and gill showed decrease. Increase in AcP and ALP activities were observed in plasma, gill and kidney, and reduction of 42% and 50% was observed in liver. Glycogen was depleted in plasma, liver and gill indicates of typical stress related response of the fish with pesticide. LDH activity was decreased in liver and muscle, indicating tissue damage and muscular harm, but a significant increase in LDH activity in gill and brain was observed. Depletion in GSH activity was observed in all the tissues, there by enhancing the lipid peroxidation resulting in cell damage. The induction in hepatic GST levels indicates the protection against the toxicity of xenobiotic-induced lipid peroxidation. There was a significant recovery in all the above biochemical parameters studied in plasma and different tissues, after seven days recovery period. These results revealed that MCP affects the intermediary metabolism of O. mossambicus and that the assayed enzymes can work as good biomarkers of organophosphorus contamination.  相似文献   

2.
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (p<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species.  相似文献   

3.
Yi X  Ding H  Lu Y  Liu H  Zhang M  Jiang W 《Chemosphere》2007,68(8):1576-1581
Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and also an environmental estrogen. In this paper, the physiological and biochemical perturbations of crucian carp (Carassius auratus) exposed to alachlor at different concentrations over 60 days were investigated. The gonadosomatic index (GSI) and hepatosomatic index (HSI) were measured. The activity of hepatic antioxidant defense and detoxifying enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of glutathione (GSH) were determined and compared with the control group. The result showed that GSI and HSI decreased significantly (P<0.05) in almost all treatments. The activities of SOD, CAT and GST were induced continuously (P<0.05), while the content of reduced glutathione (GSH) was inhibited on the whole. These changes reflect that the antioxidant systems of the tested fishes were affected. The possible defense mechanistic implications about the changes were thus discussed. Furthermore, hepatic SOD and GST were sensitive to alachlor at low concentration, indicating that they might be potential biomarkers in early detection of alachlor contamination in aquatic ecosystems.  相似文献   

4.
The effects of mercuric chloride (Hg) on lipid peroxidation (LPO), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH) levels in different organs of mice (CD-1) were evaluated. Mice were exposed (2 days/week) to 0.0 (control), 0.8 (low) and 8.0 (mid) and 80.0 (high) gHg/kg/day for 2 weeks. The high dose group was excluded from the study due to high mortality. LPO levels in kidney, testis and epididymus at low and mid doses; GR and GPx levels in testis at mid dose; SOD levels in brain and testis at both doses, liver and epididymus at mid dose; GSH levels in testis at both doses were significantly increased compared to their controls. However, the GR levels in kidney at both doses and in epididymus at mid dose; GPx levels in kidney and epididymus and SOD levels in kidney at both the doses; GSH levels in epididymus at mid dose were significantly decreased compared to their control. Body weight gain and food efficiency were significantly reduced (<0.05) in mid dose. These results indicated that Hg treatment enhanced LPO in all tissues, but showed significant enhancement only in kidney, testis and epididymus suggesting that these organs were more susceptible to Hg toxicity. The increase in antioxidant enzyme levels in testis could be a mechanism protecting the cells against reactive oxygen species.  相似文献   

5.
The effects of a novel phosphorothionate (RPR-V) synthesized at Indian Institute of Chemical Technology, Hyderabad, was studied using three sub-chronic doses of 0.033 (low), 0.066 (medium) and 0.099 (high) mg kg(-1) in male and female rats for a period of 90 days. This long term and repeated treatment of RPR-V revealed that the membrane bound target enzymes Aspartate aminotransferase and Alanine aminotransferase increased significantly in serum and kidney, whereas these enzymes significantly decreased in liver and lung tissues when measured after 45 and 90 days of treatment. This compound also caused significant inhibition of RBC Acetylcholinesterase, target enzyme of organophosphorus compounds revealing its effect on normal synaptic transmission. Two way Anova studies disclosed that the alterations were mostly dose and time dependent, sexual dimorphism was not observed when the activities of male rats were compared with female rats. Enzyme recoveries were recorded after 28 days of post treatment, high degree positive correlation was observed with regard to these enzymes between serum versus kidney, whereas in case of serum versus liver and lung tissues high degree negative correlation was recorded. These enzyme profiles elucidates that they increased in serum but they decreased significantly in liver and lung indicating necrosis of these tissues. However, in case of kidney the level of these enzymes increased significantly with parallel to serum, which is suggestive of an increase synthesis of these enzymes, may be an adaptive mechanism due to the stress of the toxicant. These biomarker enzymes can be detected rapidly and hence may be used for the prediction and diagnosis of pesticide insults.  相似文献   

6.
Two experiments were conducted in male SD rats (225-250 g) to determine changes in the activities of endogenous antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and concentrations of glutathione (GSH) in tissues after exposure to low doses of endosulfan and chlorpyrifos using a whole body exposure technique. In both experiments, 6 rats/group were exposed 3 hr/day, 5 days/week for 30 days to: 0 (control), 5, 10, 20, 40 and 60% of LD50 of either pesticide in 50% ethanol; actual concentrations were: endosulfan = 0, 0.5, 1.0, 2.0, 4.0, 6.0 mg/250 g body weight; chlorpyrifos = 0, 1.9, 3.8, 7.6, 15.2, and 22.8 mg/250 g body weight. Endosulfan decreased erythrocyte SOD by 21% in all groups and chlorpyrifos increased SOD by 18% in groups 40 and 60. Liver SOD was 12%-20% lower after endosulfan exposure; lung SOD was altered: endosulfan decreased activity by 21% and 51% and chlorpyrifos by 58 and 75% in the 40 and 60 groups, respectively (P < or = 0.05). Both pesticides increased plasma GPX activity at lower levels and reduced it by 26% and 19% in groups 40 and 60, respectively (P < or = 0.05). Liver GPX increased in the 60 group and lung GPX declined between 20% and 38% after endosulfan exposure. GSH in the liver and lung: endosulfan reduced GSH by about 30% at lower levels and increased by 41% or 70% at higher levels; chlorpyrifos decreased GSH by 28-40% in 20 and 60 groups, respectively (P < or = 0.05). Exposure to low, increasing levels of endosulfan and chlorpyrifos can differentially modify endogenous antioxidants SOD, GPX and GSH, which may lead to the development of oxidative stress in some tissues.  相似文献   

7.
Deleterious effects of chromium (VI) compounds are diversified affecting almost all the organ systems in a wide variety of animals. Therefore, the present study was carried out to determine the effectiveness of folic acid (FA) in alleviating the toxicity of chromium (VI) on certain biochemical parameters, lipid peroxidation, and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to one of four treatment groups: 0 mg FA and 0 mg Cr(VI)/kg BW (control); 8.3 microg FA/kg BW; 5 mg Cr(VI)/kg BW; 5 mg Cr(VI) plus 8.3 microg FA/kg BW, respectively. Rabbits were orally administered their respective doses every day for 10 weeks. Results obtained showed that Cr(VI) significantly (P < 0.05) increased the levels of free radicals and the activity of glutathione S-transferase (GST), and decreased the content of sulfhydryl groups (SH groups) in liver, testes, brain, kidney, and lung. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and lactate dehydrogenase (LDH) were significantly decreased in liver and testes due to Cr(VI) administration. Also, AlP and AcP activities were significantly decreased in kidney and lung. The activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Contrariwise, the activities of AST and ALT were significantly increased in plasma, while AlP and AcP decreased. Chromium (VI) treatment caused a significant decrease in plasma total protein (TP) and globulin, and increased total lipids (TL), cholesterol, glucose, urea, creatinine, and bilirubin concentrations. Folic acid alone significantly decreased the levels of free radicals in liver, brain, and kidney, and increased the content of SH-group. The activities of AST, ALT, and LDH in liver; AST, ALT, AlP, AcP, and LDH in testes; AcP in kidney; AlP and AcP in lung, and LDH in brain were significantly increased. Plasma TP and albumin were increased, while urea and creatinine were decreased. The presence of FA with Cr(VI) restored the changes in enzyme activities and biochemical parameters. In conclusion, folic acid could be effective in the protection of chromium-induced toxicity.  相似文献   

8.
Hsu PC  Guo YL  Li MH 《Chemosphere》2004,54(5):611-618
Polychlorinated biphenyls (PCBs) are considered potential endocrine disruptors due to their ability to act as estrogens, antiestrogens and goitrogens. The aim of this study is to ascertain whether acute postnatal treatment with 3,3',4,4'-tetrachlorobiphenyl (CB 77) affects sperm function and hormone levels in adult rats. Male Sprague-Dawley rats received CB 77 by ip injection of 2 or 20 mg/kg at day 21 and sacrificed at day 112. At day 112, right and left testis weights were significantly increased, whereas sperm count, motility, total motile sperm count, curvilinear velocity, average path velocity, straight-line velocity, and beat-cross frequency for motile sperm were significantly decreased in rats treated with 20 mg/kg CB 77. Sperm-oocyte penetration rate was significantly reduced in rats treated with either 2 or 20 mg/kg CB 77. There was high sperm acrosome reaction rate (ARR) in the 20 mg/kg CB 77-treated rats. There was a significant increase in thyroid-stimulating hormone level in the 20 mg/kg CB 77 group. However, no changes were seen in serum testosterone, thyroid hormones, or prolactin concentrations at day 112. In summary, this study showed that postnatal exposure to CB 77 might affect spermatogenesis, motility, ARR, and ability of fertilizing oocytes in mature rats. These results suggest that the sperm functions may be more susceptible or adapt less readily than the thyroid functions to endocrine disruption caused by dioxin-like PCB congeners.  相似文献   

9.
The joint action of pyrethroids, lambda-cyhalothrin (LC) in combination with organophosphates, fenitrothione (FNT) on antioxidant defense system and lipid peroxidation biomarkers in rat testes was studied. The results suggest that incubation of testes homogenate with different concentrations of insecticide mixture for different time intervals significantly decreased the activity of antioxidant enzymes, like glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of reduced glutathione (GSH). In addition, a significant inhibition in transaminases (AST, ALT), phosphatases (AcP, AlP) activity and protein content were observed. On the other hand, FNT plus LC increased the cellular lipid peroxidation (LPO) level and the activity of lactate dehydrogenase (LDH). In conclusion, the use of insecticides mixture might cause marked oxidative damage in a concentration and time-dependent manner.  相似文献   

10.
Antioxidant enzymes in liver and small intestine were investigated using control and streptozotocin diabetic rats fed diets with 5% olive, sunflower or fish oil for five weeks. In liver, Glutathione Peroxidase and Superoxide Dismutase decreased and in intestine Glutathione-S-transferase (GST) increased by diabetes. In isolated jejunum and ileum, this increase in GST activity was due to an increase in GST-alpha and -mu isoenzymes in jejunum and GST-alpha, mu and -pi in ileum. Since GST plays an important role in protecting tissues from oxidative damage, our results highlight the role of the intestine against free radicals in physiological or pathological situations.  相似文献   

11.
The aim of this study was to characterize biomarker responses in three-spined sticklebacks exposed to prochloraz (Pcz). For this purpose, adult sticklebacks were exposed for 2 weeks to prochloraz at 0, 10, 50, 100 and 500 μg/L prior to one week of depuration in clean water. At days 7, 14 and 21, several hepatic biomarkers were measured including 7-ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), total glutathione (GSH) content and thiobarbituric acid reactive substances (TBARS). Pcz induced a transient increase of antioxidant enzymes and a depletion of glutathione content during the first 7 days of exposure. This study showed that EROD activity and antioxidants were disrupted in a transient manner. GST was rapidly induced in a dose-dependent manner and this induction was persistent and observed also after depuration. GST appeared as a valuable biomarker to assess the exposure to Pcz.  相似文献   

12.
The aim of this study was to characterize biomarker responses in three-spined sticklebacks exposed to prochloraz (Pcz). For this purpose, adult sticklebacks were exposed for 2 weeks to prochloraz at 0, 10, 50, 100 and 500 microg/L prior to one week of depuration in clean water. At days 7, 14 and 21, several hepatic biomarkers were measured including 7-ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), total glutathione (GSH) content and thiobarbituric acid reactive substances (TBARS). Pcz induced a transient increase of antioxidant enzymes and a depletion of glutathione content during the first 7 days of exposure. This study showed that EROD activity and antioxidants were disrupted in a transient manner. GST was rapidly induced in a dose-dependent manner and this induction was persistent and observed also after depuration. GST appeared as a valuable biomarker to assess the exposure to Pcz.  相似文献   

13.
Phthalates are widely used as plasticizer in various consumer domestic products and are known to disturb the male reproductive function in rodents. This study investigated the involvement of oxidative stress and the atrophy of the testes in pubertal rats exposed to mono-n-butyl phthalate (MBP). Four-week-old pubertal male rats were separated into three groups. In group I, 21 rats were fed rat chow containing 2 % MBP for 3 days. In group II, 21 rats were fed rat chow containing 2 % MBP for 3 days and antioxidant vitamins C (250 mg/kg/day) and E (50 mg/kg/day) were injected daily. In group III, 21 rats were fed standard rat chow and used as controls. After 3 days, each testis was weighed and the germ cell development was evaluated using the Johnsen score. The urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were measured as a biological marker of oxidative DNA damage. The mean testis weight was significantly lower for group I than groups II or III (p?<?0.05). The mean Johnsen score was significantly lower for group I than for groups II or III (p?<?0.05). Urinary 8-OHdG concentrations were higher in group I than in groups II or III. Short-time exposure to MBP may therefore induce oxidative DNA damage in rat testes, while antioxidant vitamins administered during exposure may protect against this stress.  相似文献   

14.
Glutathione S-transferase (GST) and peroxidase (POX) activities have a direct relation to the effect of stress on plant metabolism. Changes in the activities of the enzymes were therefore studied. Horseradish hairy roots were treated by selected bivalent ions of heavy metals (HMs) and nitroaromatic compounds (NACs). We have shown differences in GST activity when assayed with substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB). The conjugation of DCNB catalysed by GST was inhibited in all roots treated with HMs as compared to non-treated roots, whereas NACs caused induction of the activity in dependence on the exposition time and concentration of compounds. The conjugation of CDNB by GST was not affected to the same extent. The increase of GST activity was determined in cultures treated by nickel (0.1 mM) and diaminonitrotoluenes (DANTs, 0.1 mM) for 6 h, whereas the roots treated by 2,4,6-trinitrotoluene (TNT), 4-amino-2,6-dinitrotoluene (ADNT) and dinitrotoluene (DNT, 1.0 mM) needed 27 h treatment to induce the activity. The POX activity of cultures treated by HMs was inhibited to 17-35% in comparison to non-treated cultures. The POX activity of roots treated by TNT (0.1 and 1.0 mM) for 6 and 27 h and by ADNT (0.1 and 1.0 mM) for 6 h was inhibited. A partial increase of POX activity was measured in roots treated by all NACs for 27 h. The content of oxidized glutathione (GSSG) and reduced glutathione (GSH) in the roots differed significantly. It was followed as a symptom of the stress reaction of the plant metabolism to the effect of NACs and HMs.  相似文献   

15.
16.
Effects of three different doses of endosulfan respectively designated as low, medium and high on cytochrome P450(Cyt.P450), glutathione S-transferase(GST) activity and glutathione content (GSH) of hepatic and extra hepatic tissues of rat were determined after 24 hours of treatment. Endosulfan caused induction of cyt. P450 in liver, lung and brain at all the three doses tested while in kidney, spleen and heart either induction or reduction took place and was unrelated with dosages of endosulfan. Similarly, GST activity significantly changed in extra hepatic tissues while liver GST activity did not record any significant alteration under the experimental conditions. The GSH content also showed changes (increase/decrease) unrelated to endosulfan dosages in different organs. Thus, the effects varied with organ and dosages. As these metabolic parameters are involved in biotransformation of many endogenous molecules as well, the study may throw some light on physiological disturbances due to changes in metabolizing system on one side and organ specificity in toxic action of endosulfan on the other.  相似文献   

17.
Recent studies have reported on the toxicity and related oxidative stress of selenium and mercury. The present study compares the effects of Se as sodium selenite (Na2SeO3) and Hg as mercuric chloride (HgCl2) separately and in combination. Rats received repeated oral doses of Se (0.5 micromol/ml), Hg (0.5 micromol/ml), or Se in combination with Hg (0.5 micromol/ml of each) for 5 consecutive days. Rat serum, brain and liver samples were collected for biochemical assays. The following biochemical alterations occurred in response to Hg treatment: protein content (brain and liver), acetylcholinesterase (AChE) (brain and serum), acid and alkaline (AcP and AlP) phosphatases (plasma and liver) and glutathione S-transferase (GST) (plasma and liver) activities were significantly (P<0.05) decreased, while lactate dehydrogenase (LDH) (plasma, brain and liver), aspartate and alanine aminotransferase (AST, ALT) (serum and liver) activities were significantly increased. Thiobarbituric acid reactive substances (TBARS) was significantly increased in brain and liver. Effect of Se alone included decreased AcP, AlP and GST (serum and liver) activities. However, LDH (serum, brain and liver) and AST (liver) and TBARS (brain and liver) increased. Selenium in combination with Hg partially or totally alleviated the toxic effects of Hg on different studied enzymes. It is concluded that Se could be able to antagonize the toxic effects of mercury.  相似文献   

18.

Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.

  相似文献   

19.
20.
Recent studies have reported on the toxicity and related oxidative stress of selenium and mercury. The present study compares the effects of Se as sodium selenite (Na2SeO3) and Hg as mercuric chloride (HgCl2) separately and in combination. Rats received repeated oral doses of Se (0.5 μmol/ml), Hg (0.5 μmol/ml), or Se in combination with Hg (0.5 μmol/ml of each) for 5 consecutive days. Rat serum, brain and liver samples were collected for biochemical assays. The following biochemical alterations occurred in response to Hg treatment: protein content (brain and liver), acetylcholinesterase (AChE) (brain and serum), acid and alkaline (AcP and AlP) phosphatases (plasma and liver) and glutathione S-transferase (GST) (plasma and liver) activities were significantly (P<0.05) decreased, while lactate dehydrogenase (LDH) (plasma, brain and liver), aspartate and alanine aminotransferase (AST, ALT) (serum and liver) activities were significantly increased. Thiobarbituric acid reactive substances (TBARS) was significantly increased in brain and liver. Effect of Se alone included decreased AcP, AlP and GST (serum and liver) activities. However, LDH (serum, brain and liver) and AST (liver) and TBARS (brain and liver) increased. Selenium in combination with Hg partially or totally alleviated the toxic effects of Hg on different studied enzymes. It is concluded that Se could be able to antagonize the toxic effects of mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号