共查询到11条相似文献,搜索用时 109 毫秒
1.
黄河源头生态环境变化的遥感监测及驱动因素 总被引:2,自引:1,他引:2
利用1990年、2000年和2004年的TM卫星影像数据研究表明,近10 a来,黄河源头玛多县生态环境状况变化剧烈,主要表现为沼泽、滩涂、河流、湖泊等湿地萎缩干涸,所占比例持续减少,表明水源涵养力减弱.同时,沙地、盐碱地和不宜林草荒地等劣质土地的增加使天然草地破碎化程度加大;而天然草地、林地和宜林草荒地比例持续增加,说明在21世纪初以来的暖湿化气候背景下,黄河源头-玛多县生态环境呈良性发展态势.分析认为气温、降水、蒸发、冻土等自然因素,以及超裁过牧、滥采乱挖和草地鼠害等人类活动是导致黄河源头生态环境变化的共同驱动因素,其中又以气候因子为主导,与冻土环境及水文条件相互影响. 相似文献
2.
黄河流域农业水资源与水环境问题及技术对策 总被引:6,自引:8,他引:6
对黄河流域农业水资源与水环境现状和存在问题进行了分析,并针对这些问题,提出了改善黄河流域农业水资源利用与水环境安全的技术对策。研究指出,黄河流域水资源贫乏、水质污染严重、灌溉水水质劣化、农业水资源供需矛盾突出,水环境日趋恶化,产生了严重的生态环境问题;而目前我国缺乏有效的农业水资源和水环境监测预警系统,节水农业和水污染防治技术水平低,基础设施落后,信息平台建设不够,农业种植结构和水资源不匹配。今后应加快建立农业水资源与水环境监测预警系统与信息平台,积极推进农业水资源高效利用技术升级,全面提高农业污染防控技术水平,加强农业水环境保护,调整种植结构,建立节水高效种植制度。 相似文献
3.
建立珠江三角洲区域一体化的水利政策法规体系是珠江三角洲国民经济社会发展和水利现代化建设的需要。从珠江三角洲地区现行水利政策法规存在的问题入手,开展珠江三角洲区域一体化的政策法规体系研究。结果表明:珠江三角洲地区现行水利政策法规体系仍很不完善,许多立、改、废工作亟待进行,2008年水政执法有效率总体较高,但很少在珠江三角洲层面开展区域一体化的联合执法,珠江三角洲水利政策法规体系建设应重点加强与水利现代化建设、水资源一体化配置、保护及管理相关的政策法规,进而建立统一协调、快速高效的区域一体化的联合执法体系。 相似文献
4.
黄河三角洲及珠江三角洲生态足迹分析 总被引:3,自引:0,他引:3
利用遥感解译数据,分析了解珠江三角洲及黄河三角洲自然资本的供需状况,通过分析两大三角洲地区的生态足迹,探讨在经济发展程度不同的情况下,人类对生态环境的影响程度。并借鉴珠江三角洲经济发展过程中出现的问题,对黄河三角洲今后发展可能出现的问题提出预防措施,以减少对资源的不合理需求,提出正确的功能定位,制定正确的发展方向。研究结果表明,(1)黄河三角洲和珠江三角洲的生态足迹需求均高于全国0.8hm2/人的平均水平,珠江三角洲地区生态足迹需求为1.5403hm2/人;黄河三角洲地区生态足迹需求为1.3514hm2/人。(2)化石燃料的供需状况是影响两大三角洲地区生态赤字的关键因素,珠江三角洲地区对化石燃料的需求占总生态足迹需求的72.67%,位居全国第一位;黄河三角洲地区对化石燃料的需求占总生态足迹需求的49.85%。(3)珠江三角洲除林地尚有少量生态盈余外,其他生态足迹需求均存在明显的生态赤字。受城市化及工业化进程的影响,黄河三角洲化石燃料用地和耕地资源已出现生态赤字。(4)与西方一些发达国家相比,两大三角洲的生态足迹均呈现“低需求,低供给”的特点。 相似文献
5.
黄河三角洲生物多样性分析 总被引:9,自引:0,他引:9
黄河三角洲是我国东部最年轻的陆地,保存着中国暖温带地区最广阔、最完整、最年轻的湿地生态系统。鉴于已有的研究工作对黄河三角洲地区生物多样性通过黄河与周边地区的联系方面的研究相对薄弱,以现有研究工作为基础,以黄河的廊道作用为主线,并结合2003年9月和2004年10月两次实地地面植被调查,主要对黄河三角洲自然保护区的植物区系组成状况进行统计分析,总结出黄河三角洲地区生物多样性状况、植物区系组成的特点及其与周边地区的相互关系。黄河三角洲地区生物多样性主要表现出如下特点:植被结构简单、覆盖度低、生态系统年轻性特点和湿地生态系统特点明显;植物种类少、常具有抗盐、抗旱特性;旱生、中旱生植物以及与内蒙古共有植物种类多,充分体现了黄河的生物廊道作用;主要保护动物种类多,生物多样性保护意义重大。这些特征既反映了黄河三角洲新生陆地的盐化生境特点,同时也深刻揭示了河流通道对区域生物多样性形成的重要作用。 相似文献
6.
介绍了黄河三角洲自然保护区内物种多样性和生态系统的多样性,分析了破坏和威胁生物多样性的因素,提出了自然保护区生物多样性保护措施。 相似文献
7.
With an increasing population and rapid development of the economy and society of the Yellow River Basin region, the Yellow River is at crisis point. The discrepancy between supply and demand of water resources is a key issue. In 2000–2006, the mean annual discharge of the Yellow River entering the delta was 13.2 billion m3, a reduction of 18.6 billion m3 compared with the 1980s, and 9 billion m3 less than in the 1990s. The water requirements of various sectors are increasing. Large amounts of water essential to maintain the health of the delta ecosystem have been diverted for other users. The lower river channel is shrinking and the threat of flooding is becoming severe. Moreover, water pollution is increasing to a serious level; the river mouth ecosystem is subject to degradation. Due to overall decreased flow into the delta, and almost no flow into the delta for much of the year except in wet periods, biodiversity is threatened and there has been degradation of the ecological environment. In view of the water scarcity and variation in water supply, particularly in the context of climate change, measures need to be taken to realise sustainable water use in the Yellow River Delta region. In view of the lack of a complete index system for sustainable utilisation of regional water resources in China, this paper examines the major countermeasures for sustainable water use in the region. A rational adjustment mechanism for water prices is needed. Adjustment of agricultural infrastructure and water saving need to be directed by water prices, and thus the reasonable exploitation of groundwater must also be directed by water prices. Participation of the public is to be encouraged, with the development of a water user association that will become involved in formulating water rights, water allocation and water prices. Decision-making, management and supervision of this association will be done in a democratic way to promote the social management of water saving. 相似文献
8.
9.
在分析黄河三角洲生态现状和特点的基础上 ,阐述了黄河三角洲存在的生态问题 ,并提出了生态保护对策 相似文献
10.
Wei Yang 《Ecological modelling》2011,222(2):261-267
In this paper, a multi-objective optimization model has been developed for allocating freshwater to meet the environmental flow requirements of the restored wetlands in the Yellow River Delta, China. The model seeks a rational balance among appropriate water allocation for the wetlands, a healthy ecosystem, and optimum economic returns for the humans that use the wetlands to earn their livelihood, with the degree of ecosystem health represented by the difference between actual and ideal water levels. And then a holistic method has been used for satisfying multiple objectives to avoid the problem of decision-maker subjectivity, and then solved the resulting optimal allocation model for environmental flows of the wetlands using a genetic algorithm. With water from the Yellow River as the source, the model shows how the optimal monthly water release into the restored wetlands can be achieved in dry, average, and wet years. Using the model, 20-56% reductions in water use could be achieved compared with the current pattern of water release, and the optimal water level in each month would coincide better with the ideal value based on an indicator plant community (reeds). The results of the study demonstrate the capability of the multi-objective programming model to optimize ecological water allocation and management for the wetlands of the Yellow River Delta. 相似文献
11.
Jianfeng Zhang Guang-Cai Chen Shangjun Xing Qixiang Sun Qihua Shan Jinxing Zhou 《国际发展与全球生态学杂志》2013,20(6):475-480
The Yellow River Delta region in China is a land area of 1,200,000 ha with rich natural resources. Adverse environmental conditions, such as low rainfall and high salinity, promote the dominance of black locust trees for afforestation. With the increase of CO2 in the atmosphere, this forest and others throughout the world have become valued for their ability to sequester and store carbon. Forests store carbon in aboveground biomass (i.e. trees), belowground biomass (i.e. roots), soils and standing litter crop (i.e. forest floor and coarse woody debris). There are well-developed methods to sample forest ecosystems, including tree inventories that are used to quantify carbon in aboveground tree biomass. Such inventories are used to estimate the types of roundwood products removed from the forest during harvesting. Based on standard plot inventories and stem analyses, carbon sequestration estimates of trees were 222.41 t ha?1 for the Yellow River Delta region accounted for 67.12% of the whole forest. Similarly, carbon storage by herbaceous matter and soil was 0.50 and 50.34 t ha?1, respectively. The results suggest that carbon sequestration in the forest ecosystem was performed by most of the forest, which plays an increasingly important role in sequestering carbon as the stand grows. 相似文献