首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 60 毫秒
1.
李亚峰  高颖 《环境工程学报》2015,9(3):1233-1237
实验研究主要影响因素对超声波/Fenton试剂处理苯酚废水效果的影响,确定工艺参数。以人工配制的模拟苯酚废水为实验水样,通过静态实验研究pH值、FeSO4·7H2O投加量、H2O2投加量和超声时间对苯酚和COD去除率的影响。研究结果表明,对于苯酚浓度为200 mg/L, COD 为476.6 mg/L苯酚废水,在实验用水量为1 000 mL,pH值为6,FeSO4·7H2O投加量为800 mg/L,H2O2投加量为Qth,超声时间为30 min的条件下,苯酚去除率可达到92.27%,COD去除率可达到82.48%,处理后苯酚浓度为14.80 mg/L,COD为83.50 mg/L。pH值、FeSO4·7H2O投加量、H2O2投加量和超声时间对超声/Fenton工艺处理苯酚废水均有较显著地影响,工程应用时应给予足够的重视。  相似文献   

2.
研究了混凝、活性炭吸附及其组合工艺对内蒙古某制药废水二级生化出水中有机物的去除效率,同时采用荧光光谱和凝胶色谱分析了不同技术对废水中有机物的影响。研究显示,污水中主要的有机物为微生物代谢产物、腐殖酸和富里酸,分子量在800~1 250。混凝与吸附对污水中的有机物表现出不同的去除特征,混凝无法有效去除溶解性有机物,而活性炭吸附对3种物质的去除率均达到90%以上。采用混凝和吸附组合处理后,总COD去除率达到76%,满足污水综合排放标准。  相似文献   

3.
水解酸化/好氧生化/Fenton氧化工艺处理制药废水的研究   总被引:3,自引:0,他引:3  
进行了"水解酸化/好氧生化/Fenton氧化"工艺处理制药废水的试验研究,研究表明,该工艺的处理效果显著.水温为45~55℃时,经过16~20 h的水力停留时间,水解酸化可将废水的B/C比提高至0.30~0.35;好氧生化选用AB法,2~3 h曝气后的A段COD去除率可达到65%以上,7~9 h曝气后的B段COD去除率可达到40%以上;经过5~6 h的Fenton反应后,出水水质指标符合一级排放标准的要求.  相似文献   

4.
针对焦化废水生物处理后COD难于达标排放的问题,以焦化废水生化出水为对象,对微波强化Fenton技术(频率915 MHz)的深度处理效果和反应机理进行了探讨。结果表明:在Fe2+和H2O2投加量分别为1.8 mmol·L−1和15.6 mmol·L−1条件下,Fenton处理方法对COD的最佳去除率仅为18%,利用微波强化Fenton技术对COD的去除率可提升到77%,出水COD可降至52 mg·L−1,满足《炼焦化学工业污染物排放标准》;通过比较Fenton和微波强化Fenton反应出水过滤后的COD,发现Fenton反应对COD的去除率可由18%提升至72%,表明泥相可进一步吸附部分COD;而微波强化Fenton反应的COD去除率仅略微提高至81%,表明氧化是微波强化Fenton反应的主要作用机理,这可能与微波辐射通过热效应或非热效应可加快羟基自由基的生成、从而提高了氧化反应效率有关。以上结果表明,微波强化Fenton反应是焦化废水达标排放的一种可供选择的技术,可为目前我国焦化废水处理和达标排放处理技术的选择提供借鉴。  相似文献   

5.
Fenton氧化-活性炭吸附耦合处理焦化废水生化尾水的研究   总被引:4,自引:0,他引:4  
研究了Fenton氧化、活性炭吸附、Fenton氧化一活性炭吸附等方法,对焦化废水生化尾水的处理效果,分析了Fenton氧化一活性炭吸附法处理焦化废水生化尾水的工艺条件。结果表明,Fenton氧化与活性炭吸附耦合处理焦化废水生化尾水的最优条件是:H2O2投加量为5mL/L,FeSO4·7H2O投加量为200mg/L,活性炭投加量为2g/L,反应pH=4.0,反应时间为20min。在此条件下,COD去除率可达82.6%,出水水质符合《污水综合排放标准》(GB8978--1996)一级标准。  相似文献   

6.
深井曝气工艺处理高浓度制药废水   总被引:5,自引:0,他引:5  
本废水治理工程是采用深井曝气法作为第一段、组合填料接触氧化法作为第二段的工艺流程处理高浓度抗生素制药废水。6个月的生产运转情况表明,在深井曝气装置污泥负荷3.84kg COD_(Cr)/kg MLSS·d,接触氧化池容积负荷1.33kg COD_(Cr)/m~3·d的条件下,此工艺流程取得了良好的COD_(Cr)去除效率,废水处理成本为0.35元/kg去除COD_(Cr)。文章还对治理工程的工艺设计作了详细介绍。  相似文献   

7.
甾体类制药废水的生物—生物活性炭氧化处理的试验研究   总被引:1,自引:0,他引:1  
本文试验研究了生物接触氧化法和生物活性炭氧化法对甾体类激素制药废水的处理工艺,在0.5~8.5kgCOD/m~3·d的高负荷条件下,废水COD去除率达到85%以上,取得了令人满意的结果。  相似文献   

8.
采用活性炭吸附和两级Fenton氧化组合工艺对高盐度对氨基苯酚生产废水进行了处理实验研究。结果表明,pH值对活性炭去除有机物的影响较小。当活性炭投加量为4 g/L时,TOC去除率61%。分级加药可以有效提高Fenton氧化对有机物的去除效率。在温度为25℃、pH为3、30% H2O2投加量为3%(V/V)、Fe2+/H2O2摩尔比为0.05时,两级Fenton氧化处理后,出水TOC降至150 mg/L以下。此外,Fenton氧化后形成氢氧化铁污泥颗粒粒径为4.5 μm,经过聚丙烯酰胺(PAM)絮凝之后,污泥的粒径明显增加,过滤特性改善。PAM絮凝效果依赖于溶液的pH值,当pH超过10后会失去作用,故在使用过程中需要严格控制溶液的pH值。  相似文献   

9.
铁碳微电解/H_2O_2耦合类Fenton法深度处理制药废水   总被引:3,自引:0,他引:3  
采用铁碳微电解/H2O2耦合类Fenton法深度处理制药废水,考察不同铁碳比、H2O2投加量、溶液p H及反应时间对COD去除效果的影响,通过单因素实验和正交实验确定最优条件并与铁碳微电解法的去除效果进行对比。结果表明,各因素对COD的去除效果均呈现先增加后降低或趋于稳定的趋势,且对去除效果的影响顺序为:Fe/CH2O2投加量溶液p H反应时间;在固液比为1∶10的条件下,Fe/C(质量比)为1∶1,溶液p H为2.5,反应时间为60 min,H2O2(30%)投加量为12.24 mmol/L时对COD的去除效率最高,可达71.56%;H2O2对铁碳微电解法有显著的加强作用。  相似文献   

10.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

11.
通过微波辐照活性炭与废铁屑的混合物处理橡胶促进剂生产废水。考察了炭铁混合物投加量、炭铁质量比、废水初始pH值、微波功率和微波辐照时间等对废水COD去除率的影响。结果表明,工艺的最佳参数为:炭铁混合物投加量65 g/L,炭铁质量比2∶1,微波功率200 W,微波辐照5 min,此条件下的废水COD去除率为76%;反应的表观过程近似符合一级动力学规律,动力学方程为:ln(C0/C)=0.1012t+0.8887,速率常数k=0.1012 min-1,半衰期t1/2=6.85 min;橡胶促进剂生产废水的微波辐照活性炭/铁屑处理工艺比单纯微波辐照及活性炭/铁屑处理工艺有明显的优越性。  相似文献   

12.
焦化废水是一种较难处理的工业废水,目前采用的生化方法很难使COD达到国家规定的排放标准.对超声、Fenton与絮凝联合应用处理生化后的焦化废水进行了实验研究,并探讨了三者联合应用的最佳组合反应条件及单因素对COD的影响趋势.结果表明,三者联合应用处理焦化废水COD的最佳反应条件为:Fe2 40 mg/L,H2O2 55 mg/L,FeCl3 5.4 mg/L,PAM 1.2mg/L,超声波频率为34.19 kHz.在此反应条件下,COD去除率达到77.7%;各单因素对COD去除率的影响顺序为Fe2 >H2O2>PAM>超声波频率>FeCl3.  相似文献   

13.
对模拟磷霉素钠制药废水进行Fenton-水解酸化-接触氧化小试处理实验,考察了COD、有机磷的去除效果,并对处理前后的废水进行了GC-MS分析。结果显示,增加了Fenton预处理后磷霉素钠制药废水的COD和有机磷分别降低到100和2 mg/L,去除率均可达87%以上,出水COD满足化学制药行业污染物排放标准(GB 21904-2008);Fenton过程对制药厂废水中的复杂有机物去除效果明显,GC-MS结果表明,出水中基本检测不到复杂有机物。与制药厂采用的水解酸化-接触氧化处理效果相比,增加Fenton预处理可以提高废水的可生化性和系统的处理效率。  相似文献   

14.
Fenton氧化深度处理高浓度造纸废水的中试实验   总被引:1,自引:0,他引:1  
采用Fenton氧化开展了对高浓度造纸废水深度处理的中试实验,对Fenton氧化的COD的去除效果,各药剂加药量及成本,排泥量和装置运行的稳定性等进行探讨和分析,结果表明,一级Fenton氧化的COD去除率可达到90%以上,出水COD在100mg/L左右,总加药成本在6元左右,排泥量约为1~1.2kg/t废水;二级Fenton氧化的COD去除率在96%左右,出水COD小于60mg/L,总加药成本在8元左右,排泥量约为1.15~1.4kg/t废水,验证了Fenton氧化用于高浓度造纸废水深度处理达到新的排放标准的可行性。  相似文献   

15.
采用Fenton氧化开展了对高浓度造纸废水深度处理的中试实验,对Fenton氧化的COD的去除效果,各药剂加药量及成本,排泥量和装置运行的稳定性等进行探讨和分析,结果表明,一级Fenton氧化的COD去除率可达到90%以上,出水COD在100 mg/L左右,总加药成本在6元左右,排泥量约为1~1.2 kg/t废水;二级Fenton氧化的COD去除率在96%左右,出水COD小于60 mg/L,总加药成本在8元左右,排泥量约为1.15~1.4 kg/t废水,验证了Fenton氧化用于高浓度造纸废水深度处理达到新的排放标准的可行性。  相似文献   

16.
采用Fenton氧化-序批式膜生物反应器(SBMBR)组合工艺处理干法腈纶废水。结果表明,在废水初始pH值为3.0,H2O2投加量为90.0 mmol/L,Fe2+投加量为20.0 mmol/L,反应时间为2.0 h的条件下,Fenton氧化预处理对腈纶生产废水的COD去除率达到47.0%以上,COD由1 091 mg/L降至560 mg/L,废水的BOD5/COD由0.32升至0.69,废水的可生化性得到显著提高。Fenton处理出水与丙烯腈废水等比例混合后,采用SBMBR进行生化处理,在水力停留时间为24 h,90 min缺氧/150 min好氧交替运行的条件下,COD、NH4+-N和TN的平均去除率分别为71.7%、97.2%和47.4%,碳源不足是限制TN去除效果的主要影响因素。在无外加碳源的条件下,组合工艺处理后出水COD和NH4+-N浓度分别为117 mg/L和1.7 mg/L,出水水质可以稳定达到国家一级排放标准(GB8978-1996)。  相似文献   

17.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号