首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Cu2+可以与H2O2发生类Fenton反应,用Fenton法处理同时含有难降解有机物和Cu2+的工业废水时,Cu2+对于Fenton氧化难降解有机物的反应具有促进作用。本实验在高浓度邻苯二甲酸二甲酯(DMP)和Cu2+组成的模拟工业废水中投加Fenton试剂(Fe2++H2O2),利用Cu2+辅助Fe2+催化Fenton反应氧化难降解有机物。通过正交实验,优选反应条件,并进行单因素实验,分析不同Cu2+浓度、初始H2O2浓度、H2O2∶Fe2+(摩尔比)、pH及温度对DMP去除率的影响,以确定最佳的反应条件,并对反应机理进行了初步探讨。当Cu2+浓度为10 mg/L、DMP浓度为250 mg/L、初始H2O2的浓度为499.5 mg/L、H2O2∶Fe2+的摩尔比为4∶1、温度为20℃时,DMP的去除率最高可达到98.67%。本研究为类芬顿法处理难降解有机物和重金属离子共存的复杂工业废水奠定了基础。  相似文献   

2.
Fenton试剂氧化对硝基酚中氧化还原电位的变化规律   总被引:3,自引:1,他引:2  
考察了Fenton试剂氧化对硝基苯酚(PNP)过程中氧化还原电位(ORP)的变化规律.结果表明:(1)当pH为3、H2O2投加量为3 mmol/L、Fe2+投加量为0.3 mmol/L时,废水中PNP在5.0 min时降到5 mg/L左右,去除率达95%;废水可生化性得到有效改善(BOD5/COD由最初的0.073升至...  相似文献   

3.
采用十六烷基三甲基溴化铵(CTAB)辅助水热法制备了适用于微波辅助光催化体系的高效Pb/ZrO_x催化剂,并对其进行了XRD、XPS、BET和SEM等表征,其XPS结果显示在Pb/ZrO_x表面,Zr以+2、+3和+4三种价态共存。考察了微波辅助光催化氧化(MW/PC)对硝基苯酚(PNP)过程中,微波辐照功率、催化剂投加量、溶液初始pH和PNP初始浓度对PNP去除效果的影响,得到最优操作条件为,PNP初始pH值为5,催化剂投加量为1.0 g·L~(-1),微波辐照功率为200 W。此条件下,初始浓度为50 mg·L~(-1)的PNP溶液反应12min后,PNP转化率达95%,TOC去除约70%。并且,Pb/ZrO_x能够在重复使用5次的情况下仍保持较好的活性。比较了MW、PC和MW/PC 3种体系,得到MW/PC体系将PNP去除率从单独PC体系的48%提高至95%。微波与紫外光存在良好的协同作用,MW/PC能够快速、高效去除水中PNP,为微波辅助光催化氧化去除污染物提供理论基础。  相似文献   

4.
研究了用Fenton试剂处理选矿废水中残余的黄药,分别考查了氧化时间、反应初始pH值、Fe2+浓度及H2O2用量对黄药降解效果的影响,用正交试验确定了4个因素的最好条件。结果表明:初始pH值和H2O2用量是影响去除效果的主要因素;氧化时间为60 m in,反应初始pH=4,[Fe2+]=20 mg/L,[H2O2]=20 mg/L,黄药的浓度为125 mg/L时,黄药的去除率达到99.5%;初步探讨了Fenton试剂净化废水中黄药的机理是.OH自由基先将黄药氧化为过氧化黄原酸盐,再将其氧化为CO2,黄药得到去除。  相似文献   

5.
以丙烯腈(AN)废水为研究对象,在正交实验基础上深入研究了Fenton反应体系中pH值、Fe2+浓度、H2O2浓度、温度、UV和C2O2-4对降解效果的影响,分析了不同因素作用机理,确定了最佳操作条件pH=3、[Fe2+]=400mg/L、[H2O2]=400mg/L、反应温度40℃,在此条件下丙烯腈降解率达80%以上。同时发现在紫外光、C2O2-4对Fenton试剂的协同作用下,降解率可提高10%左右。  相似文献   

6.
采用改性碳纤维(ACF)阴极电Fenton法处理电镀废水中的有机物,研究pH、Fe2+浓度、电流密度和曝气量对电镀废水COD去除率的影响。结果表明,改性ACF电Fenton法对电镀废水COD去除效果明显,在最佳反应条件(pH为3.0,Fe2+初始摩尔浓度为2.0mmol/L,电流密度为3.0mA/cm2,曝气量为0.9L/min)下反应90min,COD去除率为90.7%。  相似文献   

7.
采用活性炭载体负载Cu、Fe为催化剂,在微波诱导作用下,对垃圾渗滤液污染物进行降解。实验结果表明,活性炭负载金属前经适当浓度硝酸浸泡处理后,催化剂对COD去除率提高可超过15%,过高硝酸盐浓度对COD去除有不利影响;催化剂对COD去除率随Cu、Fe金属负载量增加呈先增加后降低的趋势,催化剂对Cu、Fe的最佳负载量分别为质量百分比2.11%和1.12%。对于AC-Cu体系,在初始pH=3,H2O2投加量为4.98×103mg/L,催化剂用量为5.0×103mg/L,420 W功率下微波辐射10 min时,垃圾渗滤液COD去除率可达到84.13%;对于AC-Fe体系,当H2O2投加量为0.33×103mg/L,催化剂AC-Fe用量为2.0×104mg/L,420 W功率下微波作用10 min时,垃圾渗滤液COD去除率为60.16%。分析2种催化剂对COD去除差异的原因,可能是催化剂AC-Cu表面单分子分布的阈值比AC-Fe高。降解液的pH值对AC-Cu体系、AC-Fe体系COD去除影响存在拐点,最高COD去除率点对应的降解液pH值为3。微波辐射功率较低时,体系COD去除率随辐射功率增加而增加;辐射功率较高时,高温下垃圾渗滤液中有机硫化物分解成小分子硫化物,对催化剂活性存在一定抑制作用。  相似文献   

8.
超声-Fenton法处理偶氮染料橙黄II的研究   总被引:1,自引:0,他引:1  
以偶氮染料橙黄II为研究对象 ,考察了Fenton反应在超声辐射条件下 ,pH值、H2 O2 浓度、Fe2 + 离子浓度对COD去除率的影响。实验结果表明 ,超声对Fenton试剂处理偶氮染料橙黄II具有强化作用。超声条件下 ,当染料浓度为10 0mg/L、pH为 3.0、Fe2 + 离子浓度为 10mg/L、H2 O2 浓度为 4 0 0mg/L时 ,反应 90min ,COD去除率最高可达 93%。  相似文献   

9.
微波-Fenton对沼液中抗生素和激素的高级氧化   总被引:2,自引:1,他引:1  
采用微波强化Fenton氧化处理系统,研究H2O2浓度、Fe2+浓度、初始pH、微波辐射时间和微波辐射功率对沼液中喹乙醇、土霉素、四环素及金霉素降解效果的影响.结果发现,采用微波强化Fenton氧化降解沼液中抗生素与激素的最优条件是:H2O2浓度为40 mg/L、Fe2+浓度为12 mg/L、初始pH为4、微波辐射时间为2 min、微波辐射功率为中火(445W),沼液中喹乙醇、土霉素、四环素、金霉素和COD的去除率分别达到67%、93%、91%、88%和46%.在水浴条件下,与单独微波辐射和单独Fenton相比,微波强化Fenton氧化有明显的优越性.  相似文献   

10.
为了研究微波强化Fenton/活性炭工艺处理高浓度制药废水的影响因素,以阜新某集团公司生产制药原料排出的废水为研究对象,利用静态实验,采用混凝-微波强化Fenton/活性炭工艺对高浓度制药废水进行实验。实验用水为100 mL、COD为576~1 440 mg/L的制药废水,当活性炭投加量为2 g,H2O2投加量为3/4Qth,pH值为5,微波辐照功率和时间分别为500 W和7 min时,COD去除率可达到92.6%,出水COD在42.6~106.6 mg/L范围内。实验结果表明,活性炭的投加量、H2O2的投加量、pH值、微波辐照功率和辐照时间对微波强化Fenton/活性炭工艺的处理效果影响都较显著。  相似文献   

11.
针对硫酸盐还原菌(SRB)处理酸性矿山废水缺乏有效有机碳源问题,运用生活污水、鸡粪和锯末质量比80∶7∶3混合物的发酵液作为新型有机碳源驯化硫酸盐还原菌SRB,并研究SRB以该新型有机碳源作为营养物质在不同COD/SO2-4(C/S)值、pH值、初始硫酸根(SO2-4)浓度、重金属离子(Fe2+、Mn2+、Cu2+和Zn2+)浓度条件下对SO2-4的去除效果,以确定SRB去除SO2-4的最佳反应条件。实验结果表明,在厌氧环境SRB接种量8%、生长温度35℃、转速50 r/min、C/S为1.5~2.0、pH值6~7、初始SO2-4浓度≤3 000 mg/L、Fe2+在100~300 mg/L、Mn2+为35 mg/L时反应条件最佳,SO2-4去除率均可达90%以上;其中Fe2+浓度≤500 mg/L、Mn2+浓度≤140 mg/L时均会促进SRB对SO2-4的还原,当Fe2+浓度≥600mg/L时会严重抑制SRB,Mn2+浓度140 mg/L时会抑制SRB;Cu2+、Zn2+的存在对SRB均有影响,当Cu2+浓度15 mg/L时、Zn2+浓度45 mg/L时对SRB均有抑制作用。新型有机碳源可作为SRB的优良有机碳源,同时可实现以废治废的目的。该成果为实际应用提供了参考。  相似文献   

12.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

13.
通过微波辐照活性炭与废铁屑的混合物处理橡胶促进剂生产废水。考察了炭铁混合物投加量、炭铁质量比、废水初始pH值、微波功率和微波辐照时间等对废水COD去除率的影响。结果表明,工艺的最佳参数为:炭铁混合物投加量65 g/L,炭铁质量比2∶1,微波功率200 W,微波辐照5 min,此条件下的废水COD去除率为76%;反应的表观过程近似符合一级动力学规律,动力学方程为:ln(C0/C)=0.1012t+0.8887,速率常数k=0.1012 min-1,半衰期t1/2=6.85 min;橡胶促进剂生产废水的微波辐照活性炭/铁屑处理工艺比单纯微波辐照及活性炭/铁屑处理工艺有明显的优越性。  相似文献   

14.
Fenton体系降解水中偶氮染料的研究   总被引:1,自引:0,他引:1  
研究了Fenton体系对于水溶液中偶氮染料橙G(orange G,OG)的降解,反应30 min后,在[Fe2+]0=0.1mmol/L、[H2O2]0=10 mmol/L、pH=3.0的条件下,初始浓度为20 mg/L的OG的去除率达到99%以上。与H2O2相比,OG的降解速率随着Fe2+不同投加量的变化更为敏感。Fe2+和H2O2初始浓度较高时,反应过程中的Fe2+的浓度维持在一个较低的水平,OG的降解速率较快。腐殖酸对OG在Fenton体系中的降解影响表现出明显的阻碍作用,并且随着腐殖酸浓度的增加,抑制作用越来越大。  相似文献   

15.
二级Fenton氧化高浓度有机硅废水研究   总被引:2,自引:0,他引:2  
采用二级Fenton氧化技术对可生化性差的高浓度有机硅废水进行处理,考察了不同因素对COD去除率的影响,对比了一级氧化和二级氧化的效果。结果表明对于COD为9 600 mg/L的高浓度有机硅废水,pH为3,[H2O2]/[Fe2+]=2∶1为最佳的反应条件,COD去除率随着H2O2的投加量的增大先增大而后减小,每200 mL水样中先投加20%的硫酸亚铁12 mL,然后分2次投加30%的H2O2各4 mL,氧化完成后调整pH值为7~8静止沉淀,COD去除率达89.2%。对于某绝缘电器厂的生产废水经二级Fenton氧化处理后,出水有机物浓度显著降低,可生化性提高,Fenton二级氧化可以作为高浓度有机硅废水的预处理工艺。  相似文献   

16.
UV/Fenton法预处理N-甲基苯胺生产废水   总被引:5,自引:1,他引:4  
采用UV/Fenton法对N-甲基苯胺生产废水进行预处理。当原水COD约为3 400 mg/L时,在适宜操作条件(H2O2投加量为50 mL/L,Fe2+投加量为1.209 g/L,pH=5.0,反应时间为30 min)下的COD去除率可达90%以上。同时得到Fenton试剂处理该废水的适宜条件为:H2O2投加量为60 mL/L,Fe2+投加量为1.692 g/L,pH为5.0,反应时间30 min;单独UV辐照处理该废水的较适宜条件为:反应时间为20 min, pH=5.0。最后就3种处理方法进行了比较,发现UV对Fenton试剂处理N-甲基苯胺生产废水具有一定促进作用。反应前后的紫外光谱说明,经UV/Fenton反应后,原水中的含苯环物质已得到了彻底的氧化分解。  相似文献   

17.
利用Ce-Fe/Al2O3为催化剂的非均相光Fenton体系降解阳离子红GTL模拟废水,考察了H2O2浓度、催化剂用量、初始pH值及不同工艺过程对降解效果的影响,通过紫外-可见漫反射光谱、红外光谱、XPS手段研究铁在反应中的价态变化.结果表明,在11 W低压汞灯照射下,非均相光Fenton体系能够有效地降解结构稳定的阳离子红GTL,在pH 6,反应温度20℃,时间90 min,Ce-Fe/Al2O3 2 g/L,H2O2浓度340 mg/L,含50 mg/L阳离子红GTL模拟废水TOC去除率为92.40%;光Fenton反应中Fe(Ⅲ)转化为Fe(Ⅱ).  相似文献   

18.
Fenton氧化法对磺胺类抗生素的降解动力学   总被引:2,自引:0,他引:2  
采用Fenton氧化法同时降解水溶液中磺胺吡啶(SPY)、磺胺二甲基嘧啶(SMZ)和磺胺甲噁唑(SMX)。系统考查了初始H2O2浓度、Fe2+浓度、pH对3种磺胺类抗生素降解性能的影响。结果表明,3种磺胺抗生素被完全降解的最佳Fenton氧化条件是:H2O2浓度为2.0 mmol/L,Fe2+浓度为0.10 mmol/L,pH为3.0~3.5,反应时间为20 min。Fenton试剂对3种磺胺类抗生素的降解符合一级反应动力学,速度常数为0.0318~0.2002 min-1。  相似文献   

19.
采用赤泥吸附协同Fenton法处理焦化废水,两者协同处理对COD的去除率高于其单独处理之和.考察了赤泥投加量、初始pH值、反应温度、H2O2浓度和Fe2+浓度等因素对降解效果的影响,实验结果表明,在20 g/L的赤泥、初始pH=3、80 mmol/L的H2O2、224 mg/L的Fe2+的最佳条件下,经过120 min...  相似文献   

20.
超声-Fenton法处理偶氮染料橙黄Ⅱ的研究   总被引:11,自引:1,他引:11  
以偶氮染料橙黄Ⅱ为研究对象,考察了Fenton反应在超声辐射条件下,pH值、H2O2浓度、Fe2 离子浓度对COD去除率的影响。实验结果表明,超声对Fenton试剂处理偶氮染料橙黄Ⅱ具有强化作用。超声条件下,当染料浓度为100mg/L、pH为3.0、Fe2 离子浓度为10mg/L、H2O2浓度为400mg/L,反应90min,COD去除率最高可达93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号