首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
评述了原位产生H2O2的电化学法污水处理技术中使用的主要电极,研究了用石墨制备高效气体扩散电极的方法。对石墨用HNO3与H3PO4的混合液改性,石墨与聚四氟乙烯的质量比为2∶1,电极经350℃煅烧1 h,对溶解O2还原产生H2O2的催化活性最高。仅在pH值很低时,电极的活性较差,在pH=3~9时,电极的活性受pH值变化影响较小。在pH=3时电解150 min,电极的电流效率始终高于72%,H2O2浓度达到了274.5 mg/L。  相似文献   

2.
针对流动电极电容去离子技术(FCDI)中活性炭利用率低的问题,采用三维多孔石墨毡充当集流体,强化系统的电子转移,提升脱盐性能。结果表明,石墨毡的引入使FCDI系统的脱盐效果提升了175%,并且将脱盐能耗降低了40%。通过分别比较石墨毡和活性炭对于系统脱盐效果的贡献,发现石墨毡主要是通过强化活性炭与集流体之间的电子传递,实现FCDI系统脱盐效率的提升。同时,阴阳极侧电子传递实验也证实了石墨毡的引入的确提升了集流体与活性炭之间的电子传递。这项研究解决了FCDI系统中活性炭的低利用率问题,为FCDI技术的应用与推广提供了理论上的指导。  相似文献   

3.
付荟雯  张博  胡宏苏  李鹏 《环境工程学报》2023,17(12):4066-4075
采用超声-浸渍法制备石墨烯(GO)复合活性碳纤维(ACF)气体扩散电极,对其微观形貌、表面元素及表面官能团等进行表征,通过甲基橙批量降解处理实验阐述阴极双氧水产生性能与机理。结果表明,制备条件GO与聚四氟乙烯分散液(PTFE)质量比为1:4、GO浆液中无水乙醇添加量100 mL、煅烧温度360 ℃、煅烧时间10 min得到的电极性能最优,GO/ACF较ACF在45 min电催化反应甲基橙降解率提升了21.11%,双氧水最终的质量浓度提高了4.65倍,GO/ACF对甲基橙的最终降解率为100.0%,扫描电子显微镜微观形貌表征结果表明,石墨烯可均匀负载于活性碳纤维表面,X-射线光电子能谱、傅里叶变幻红外光谱仪、循环伏安及电化学阻抗测试结果表明,石墨烯复合增加了电极表面C=O官能团含量,电极电阻减小了40.06%,有利于产生H2O2。对初始电压、电解质浓度影响降解因素进行了优化,使用10次后GO/ACF对甲基橙降解率仍保持在100.0%、甲基橙废水COD去除率仅下降了4.45%,表明GO/ACF具有较高循环稳定性。以上研究结果可为印染废水电催化高效脱色处理与有机污染物氧化降解提供理论依据与技术借鉴。  相似文献   

4.
通过单因子实验考察了无硫膨胀石墨制备过程中氧化剂及插层剂用量、氧化反应及插层反应时间、氧化反应及插层反应温度对无硫膨胀石墨膨胀体积的影响。通过正交实验确定了制备无硫膨胀石墨的最优条件是:石墨(g)∶浓硝酸(mL)∶30%H2O2(mL)∶乙酸酐(mL)=1∶2.25∶0.25∶0.6,在30℃条件下氧化反应60 min,加入插层剂后在60℃条件下插层反应90 min,此条件无硫膨胀石墨的膨胀体积达317 mL/g使用XPS、FT-IR、XRD和SEM对无硫膨胀石墨进行了表征并对其吸油性能和再生性能进行了研究。结果表明,所制备无硫膨胀石墨对原油和柴油的最大吸附量分别为66.3 g/g和62.7 g/g。吸附原油后的无硫膨胀石墨抽滤再生后首次再生率为49.1%,原油的回收率为64.5%。  相似文献   

5.
钛修饰电极的制备及电化学性能比较   总被引:3,自引:0,他引:3  
通过电沉积法在钛网(Ti)上负载钯、钯镍双金属及聚吡咯(PPy)双金属,对比研究不同修饰对电极电化学催化活性的影响。循环伏安测试(CV)表明,在最佳制备条件下,Pd/Ti电极在-500 mV(以Hg/Hg2SO4为参比电极)左右获得氢吸附峰值为-59.47 mA;引入Ni制备双金属修饰电极(PdNi/Ti电极)获得氢吸附峰值为-64.40 mA,双金属修饰电极表现出较好的电催化性能;吡咯修饰后制得的Pd-Ni/PPy/Ti电极获得的氢吸附峰值最大,峰值为-80.14 mA,电催化性能更优。扫描电镜(SEM)分析了Ni和PPy的引入对电极表面形态的改变。利用原子发射光谱(AES)分析了电极表面Pd、Ni金属的负载量。实验表明,Ni与PPy的引入使Pd-Ni/PPy/Ti电极在大大减少钯负载量的情况下,仍具有很好的电催化性能,电化学脱氯潜能也很大。  相似文献   

6.
溶胶-凝胶法制备稀土Gd掺杂SnO2电催化电极的实验研究   总被引:2,自引:0,他引:2  
本实验采用溶胶-凝胶法,以无机盐SnCl4·5H2O、Sb2O3、Gd(NO3)3为前驱体,制备稀土(Gd)掺杂Sn、Sb溶胶,以钛电极为基材利用该溶胶制备稀土(Gd)掺杂SnO2涂层电极.优化了溶胶-凝胶法制备稀土Gd掺杂SnO2涂层电极的实验条件,研究了在不同加水量、柠檬酸量、pH值等条件下所制备的电极以苯酚为目标有机物的电化学降解特性,对所获得的电极进行了TOC测试及SEM、XRD和XPS等表征,分析并讨论了稀土掺杂对SnO2电极性能的影响机理.结果表明,溶胶-凝胶法制备稀土掺杂SnO2涂层电极是可行的,稀土Gd的掺杂有利于SnO2电极电催化性能的提高,而且不同的加水量、柠檬酸量、pH值对电极性能有一定的影响.本实验条件下,加水量(水与前驱体总量摩尔比)R为36、柠檬酸加入量(柠檬酸与前驱体总量之摩尔比)N为1.0、溶胶pH值为2时所制备的电极降解效果最好,电极最稳定.所获得的电极为纳米涂层电极,其表面涂层中SnO2、Gd2O3等催化活性物质的含量均较高,对苯酚的降解有较好的效果.  相似文献   

7.
以IRA 402强碱性阴离子交换树脂为原料,通过静电纺丝技术制备对硝酸盐具有选择去除性能的薄膜(nitrate selective removal membrane,NSRM),采用扫描电镜、傅里叶红外、Zeta电位分析仪等仪器对其进行分析和表征,考察了纺丝时间、操作电压、循环流速、硝酸盐初始浓度和共存离子等因素对NO3去除性能的影响。表征结果表明,NSRM膜表面粗糙多孔且带正电,薄膜上C≡N、C(O)NH、N—H等基团的存在促进NO3的优先吸附。电吸附结果表明,纺丝时间3 h制得的NSRM膜对NO3去除率最优,在初始质量浓度为50 mg·L−1,操作电压为2.0 V,循环流速为100 mL·min−1时硝酸盐去除率达88.17%。多离子混合条件下,NSRM薄膜对F-、Cl-有较好的选择性,对SO42−有一定选择性,对PO43-选择性不佳,其中,当NO3与F、Cl物质量浓度比值为1:1时,NO3的选择性分别为4.23和2.09。  相似文献   

8.
混合电极中各组分的质量比是影响膜电容去离子(membrane capacitive deionization, MCDI)系统脱盐性能的重要因素。重点研究了混合电极中活性材料(活性炭)、导电剂(炭黑)和粘结剂(聚四氟乙烯)3种组分的质量比对MCDI系统脱盐性能的影响,并优化了工艺参数。实验结果表明,在进水氯化钠质量浓度为0.4 g·L−1时,控制活性炭、炭黑及聚四氟乙烯的质量比为8∶1∶1、运行电压为1.2 V,进水流速为4 mL·min−1,MCDI系统具有较优异的脱盐性能,其吸附容量和脱盐速度分别为10.13 mg·g−1和0.44 μmol·(cm2·min)−1,电荷效率和单位能量脱盐量可分别达95.27%和8.23 μmol·J−1;而且,增大进水中氯化钠浓度会进一步提升MCDI系统的吸附容量和脱盐速度,但其脱盐率会有所降低。吸附热力学和动力学拟合结果表明,此混合电极材料脱盐过程分别符合Freundlich吸附等温方程和准二级动力学方程。  相似文献   

9.
二氧化铅电极的制备、表征及其电催化性能研究   总被引:9,自引:0,他引:9  
以电沉积法制备了Ti/PbO2和Ti/MnO2/PbO22种电极.采用SEM、XRD和XPS等分析方法表征了电极的形貌、元素组成及元素化学态,并以罗丹明B为目标有机物,考察了所制备电极的析氧极化曲线和电催化活性以及Ti/MnO2/PbO2电极的循环伏安曲线.研究结果表明,Ti/MnO2/PbO2电极的稳定性、使用寿命、析氧电位和电催化活性较Ti/PbO2电极都有所提高,并且罗丹明B在Ti/MnO2/PbO2电极上的反应主要发生在析氧反应区,且反应不可逆.  相似文献   

10.
采用溶剂热法制备了稀土Nd掺杂TiO2-NTs/SnO2-Sb电极,以苯酚作为典型有机物,考察了电极组成、结构与电极电催化效能的关系,实验结果表明,Nd的掺杂量对电极电催化性能有较大的影响,当前驱液中Nd/Sn原子摩尔百分比为3%时,电极的电催化活性最佳,对苯酚浓度及TOC的降解速率较空白电极(Nd0%)提高了60%及52%。利用SEM及XRD分析方法对所制备的电极进行了形貌及晶形结构的表征,并计算了电极表面SnO2晶胞参数以及平均粒径,结果显示,适量地掺杂Nd元素后,电极表面更加致密,SnO2平均粒径变小。通过XPS分析电极表面元素组成,并计算电极表面吸附氧含量,结果表明,由于Nd元素的存在,降低了涂层中晶格氧(Olat)的含量,减弱了电子的吸引作用,促使了Sn4+周围电子云密度升高,从而电极表面Sn元素特征衍射峰表现为向低结合能方向偏移。与空白电极(Nd0%)相比,改性后的电极(Nd3%)涂层表面Sb含量下降,且吸附氧(Oads)含量上升,为空白电极的1.6倍。EPR测试结果进一步证实了改性后电极性能提高的机制,Nd元素的引入,增加了电极涂层表面氧空位的浓度,使得电极涂层表面各元素的化学环境发生改变。掺杂改性后,电极的析氧电位以及产羟基自由基能力均得以提升,从而促使电极催化活性大大增强。  相似文献   

11.
为了有效地改善养猪场污水的质量,以H2O2为药剂,对污水进行了水浴加热和超声波辅助的对比实验,考察了超声波发生器输出端电流强度、处理时间、H2O2用量对污水的COD、氨气及颜色的影响,并进行正交实验优化。结果表明,超声波协同H2O2处理养殖污水是一种切实可行的方法,超声波协同H2O2处理污水的最佳工艺条件:电流0.7 A、处理时间2 min、H2O2用量3%,在此条件下降低COD量可达95%以上,氨氮的含量可降至14~15 mg/L,氨臭味大大得到了改善,并将原污水由黑色变为浅黄色。  相似文献   

12.
采用O3、H2O2/O3和UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40 min,溶液pH 8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

13.
采用浸渍-热分解法制备了含IrOx-TiO2中间层的IrO2-SnO2电极,得到的电极具有较高的析氯电催化活性和较强的稳定性,并通过电化学氧化法对Na2SO3海水脱硫模拟液进行处理,考察了电流密度、温度、pH值和电解时间等电解工艺参数对Na2SO3去除率和化学需氧量COD的影响.结果表明,在电流密度为200 mA/cm...  相似文献   

14.
采用可见光光电-Fenton体系对罗丹明B模拟废水进行处理。探讨了自制电解液、阳极氧化时间、煅烧温度、煅烧时间因素对阳极材料-TiO2薄膜电极的制备的影响,以及以此为阳极材料的可见光光电-Fenton体系对污染物的降解效果和光电协同作用,并通过响应面优化实验对制备条件优化。在单因素实验得到了参数取值的粗略范围的基础上,通过响应面优化实验得到了最优的制备条件:电解液0.5%NH4F丙三醇溶液、阳极氧化时间93.26 min、煅烧温度602.89℃、煅烧时间127.49 min,模拟出在该条件下的光电-Fenton去除率为70.78%;对此条件下的TiO2薄膜电极进行光催化和电-Fenton实验,得到光电协同因子为1.92;各因素对光电-Fenton去除率影响大小关系为:阳极氧化时间>煅烧时间>煅烧温度。响应面模型3次验证实验的误差均在5%以内,模型可用。  相似文献   

15.
草酸钾活化法制备榴莲壳活性炭及其表征   总被引:1,自引:0,他引:1  
以榴莲壳为原料,选择K2C2O4为活化剂,在自制氛围气中进行化学活化制备活性炭。考察了活化剂/原料浸渍比、活化温度与活化时间对活性炭的碘和亚甲基蓝吸附值及得率的影响。结果表明,制备榴莲壳活性炭的理想条件为:活化剂/原料浸渍比1.5∶1、活化温度800℃和活化时间120 min;此时活性炭的SBET(BET比表面积)、总孔容和微孔孔容分别为1 195 m2/g、0.60 cm3/g和0.41 cm3/g。利用比表面和孔隙度分析仪、场发射扫描电镜(FE-SEM)和傅立叶红外光谱法(FT-IR)对活性炭的孔结构特征、微观形貌和表面官能团进行了表征。FE-SEM观测结果显示榴莲壳活性炭孔隙结构发达,且含有丰富的中孔。  相似文献   

16.
考察用不同的氧化剂降解1,2,4-三氯苯(TCB),3种不同方法对TCB的去除效果存在较大差别,其处理效果依次为:H2O2O3O3/H2O2。采用响应面法优化O3/H2O2工艺降解TCB的条件。结果表明,TCB初始浓度和H2O2投加量对TCB去除效果影响较大。TCB的降解符合准一级反应动力学规律,最佳降解条件为TCB初始浓度0.3 mg/L,pH=8.13,H2O2投加量0.40 mmol/L,O3转化率75%。在此条件下,TCB的平均去除率为91.5%,与预测值93.1%吻合度较高。  相似文献   

17.
含聚丙烯酰胺采油污水的有效处理是近年来困扰油田三次采油生产的一个难题。研究采用移动床生物膜技术与O3/UV/H2O2高级氧化技术的组合方法来处理含聚丙烯酰胺采油污水。实验结果表明,移动床生物膜技术可以有效去除污水中的石油类有机物,但对聚丙烯酰胺几乎无效果。O3/UV/H2O2高级氧化技术可以降解污水中的聚丙烯酰胺。组合方法处理后的含聚丙烯酰胺采油污水水质可以达到污水综合排放标准中的一级要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号