首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
溴化十六烷基吡啶改性沸石对水中菲的吸附作用   总被引:1,自引:1,他引:0  
采用不同浓度的溴化十六烷基吡啶(CPB)溶液对天然沸石进行改性,制备得到了单层和双层CPB改性沸石,并通过批量吸附实验考察了这两种CPB改性沸石对水中菲的去除作用.结果表明,单层和双层CPB改性沸石对水中菲均具备良好的吸附能力.CPB改性沸石对水中菲的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中菲的单位吸附量随吸附剂投加量的增加而降低.CPB改性沸石对水中菲的吸附动力学过程满足准二级动力学模型.CPB改性沸石对水中菲的吸附平衡数据可以采用线性模型和Freundlich模型加以描述.CPB改性沸石对水中菲的吸附过程是一个自发和放热的过程.单层CPB改性沸石吸附水中菲的机制主要是疏水作用,双层CPB改性沸石吸附水中菲的机制主要是有机相分配作用.当双层CPB改性沸石的CPB负载量为单层CPB改性沸石的CPB负载量的2倍时,前者对水中菲的吸附能力略微强于后者.以上结果表明,双层和单层CPB改性沸石均可以用于水中菲的去除;为节约成本,单层CPB改性沸石与双层CPB改性沸石相比更适合用于水中菲的去除.  相似文献   

2.
试验通过制备的污泥基吸附剂A、B、C和市售果壳活性炭分别对磷酸二氢钾、三聚磷酸钠、甘油磷酸钠不同的磷溶液进行吸附除磷,研究吸附时间、吸附剂投加量、吸附溶液pH值以及磷溶液初始浓度对除磷效果的影响。试验结果表明:污泥基吸附剂对磷的去除率随吸附时间的增加而提高,在2h时基本达到吸附平衡;磷去除率随吸附剂投加量的增加而提高,但单位吸附剂的吸附量会降低;磷去除率随着磷溶液浓度的增加而降低,而吸附量随磷溶液浓度的增加而提高;随着污泥基吸附剂含铁量的增加,磷溶液解析pH值也越小;同时在对生活污水吸附除磷试验中发现,污泥基吸附剂A、B、C磷去除率均好于市售果壳活性炭,分别为73.4%、85.2%、93.6%、73.3%。  相似文献   

3.
采用共沉淀法对混酸氧化的多壁碳纳米管(MWCNTs)进行磁化,形成了Fe3O4/MWCNTs磁性复合材料(MMWCNTs).研究了酸化时间对MMWCNTs制备及其吸附水中菲性能的影响.结果表明:弱酸条件下吸附效果较好,MMWCNTs对水中菲的吸附在30min内快速上升,到60min时基本达到平衡,吸附过程符合准二级动力学模型.MMWCNTs对水中菲的饱和吸附量随酸化时间增加呈现先升高后降低的趋势.酸化7h后制备的MMWCNTs的饱和吸附量最大,达到17.56μg/mg.  相似文献   

4.
研究了不同粘土矿物和碳纳米管 (CNTs)吸附去除水体中微囊藻毒素 (Microcystins,MCs)的作用 .结果表明 ,在MC RR和LR的初始浓度分别为 2 1 0和 9 5mg·L-1时 ,尽管高岭土和海泡石等粘土矿物对MCs有一定的吸附能力 ,但吸附量分别低于 3 0和 1 6mg·g-1.与测试的不同粘土矿物相比 ,CNTs对MCs的吸附能力较强 ,吸附MC RR和LR量分别达到了 14 8和 6 7mg·g-1,是粘土矿物吸附量的 5倍左右 .进一步研究发现 ,CNTs对MCs的吸附能力随CNTs外径的增加而减少 ,说明CNTs的比表面积是决定吸附MCs量大小的重要因素之一 ,这在如何选择碳纳米管规格用于高效吸附去除水体中MCs方面具有重要意义  相似文献   

5.
以邻苯二甲酸(PA)和邻苯二甲酸二乙酯(DEP)为目标污染物,碳纳米管(CNTs)为吸附剂,通过不同pH值条件下单、双溶质的吸附实验,结合能量分布理论,分析PA对DEP在CNTs上的竞争和取代吸附.结果表明,在同一pH值下,DEP在CNTs上的吸附性强于PA.对于DEP,pH值改变导致的CNTs分散稳定性的变化是影响其吸附的决定因素.对于PA,溶液pH值会影响CNTs的表面电荷及PA的解离程度,两者均会产生影响.双溶质体系下,PA对DEP在CNTs上的吸附存在竞争和取代效应.在不同pH值条件下,PA对DEP在CNTs上的竞争和取代的程度与CNTs的分散稳定性和PA的解离程度有关.基于能量分布的分析表明,虽然PA的加入导致DEP在CNTs上可利用的高能吸附位点数量显著下降,但是其可利用的低能吸附位点数量增加.  相似文献   

6.
硝酸处理的碳纳米管吸附水溶液中汞离子的研究   总被引:1,自引:0,他引:1  
碳纳米管是一种具有独特结构和优异性能的纳米材料。该文研究了硝酸处理的碳纳米管作为吸附剂吸附水溶液中的汞离子的吸附特性,考察了溶液pH值、吸附时间、溶液浓度以及吸附剂的量等因素对吸附行为的影响。实验结果表明:在pH值为2~5的范围内,碳纳米管对汞离子的吸附量随着pH值的增大而增大,并在pH为5时(对汞离子的吸附量)达到了最大值,在pH大于5时,pH值对吸附效果影响不大。碳纳米管吸附汞离子的量随着吸附时间的增加而增大,且在60min内达到了吸附平衡,当Hg2+浓度为20mg/L时吸附量为16.63mg/g。通过对Langmuir和Freundlich方程对吸附等温线的拟合比较,Langmuir方程更适合描述吸附特性。随着吸附剂量增加,吸附效率上升。研究结果表明,硝酸处理的碳纳米管是一种有效的水溶液中汞离子的吸附剂。  相似文献   

7.
为了探究添加复合吸附剂对土吸附菲和Cr(Ⅵ)的影响,采用玉米秸秆生物炭和200%CEC十二烷基二甲基甜菜碱(BS-12)修饰膨润土(B200B)以质量比_(1∶2)、_(1∶1)和_(2∶1)组配为3种复合吸附剂(CS_(1∶2)、CS_(1∶1)和CS_(2∶1)),将其以不同添加量(2%、5%和10%)加入塿土,批处理法研究各土样对菲和Cr(Ⅵ)的等温吸附,并对比不同pH值和温度对吸附的影响.结果表明∶1添加复合吸附剂的土(CS塿土)对Cr(Ⅵ)的吸附量是CK(塿土)的3.02~13.61倍,且等添加量下Cr(Ⅵ)吸附量表现为CS_(2∶1)CS_(1∶1)CS_(1∶2)CK.吸附为自发过程,表现为焓增(CS_(1∶2)除外)、熵增的特征.不同CS塿土对菲的吸附量为CK的3.87~13.00倍.2%和5%添加量下,菲的吸附量表现为CS_(1∶2)CS_(2∶1)CS_(1∶1)CK,而菲吸附量在10%添加量下为CS_(1∶2)CS_(1∶1)CS_(2∶1)CK.吸附表现为自发、焓减和熵增的特征.210~30℃范围内,CK、CS_(1∶1)和CS_(2∶1)塿土对Cr(Ⅵ)的吸附量增加了5.84%、4.63%和8.22%,而CS_(1∶2)塿土对Cr(Ⅵ)的吸附量降低2.70%.CK对菲的吸附量从10~30℃增加1.69%,CS_(2∶1)、CS_(1∶1)和CS_(1∶2)土对菲的吸附量分别降低了10.55%、4.36%和12.81%.3pH值4~10,CK对Cr(Ⅵ)的吸附无显著变化,而各CS塿土对Cr(Ⅵ)的吸附量随pH值增大而降低.CK、CS_(1∶2)和CS_(1∶1)塿土对菲的吸附量在pH=4最大,而CS_(2∶1)塿土对菲的吸附量在pH=7最大.4复合吸附剂中B200B比例越高,CS塿土对菲的吸附越佳,而生物炭比例越高,CS塿土对Cr(Ⅵ)的吸附越好.  相似文献   

8.
以腐殖酸(Humic Acid,HA)为研究对象,通过压力辅助过滤技术将碳纳米管(Carbon Nanotubes,CNTs)预涂覆在聚醚砜(Polyethersulfone,PES)平板膜表面,制备了CNTs预涂覆低压膜,分别考察了该膜在恒压和恒流实验中对HA的去除情况及其对膜污染的缓解作用.研究表明,CNTs预涂覆膜可以有效缓解基膜的污染,保证CNTs的分散性,增加PES膜表面预涂覆CNTs的投加量,有助于缓解膜污染的发生;采用径向尺寸小的CNTs制备出的预涂覆低压膜,其抗污染能力更佳.研究进一步采用恒流膜滤装置对膜滤过程的3个阶段(新膜过滤阶段、膜污染加速阶段、堵塞膜截留阶段)进行了模拟,考察了CNTs预涂覆低压膜对HA的去除机理.结果表明,新膜过滤阶段,CNTs预涂覆低压膜运行初期,CNTs的吸附性能对HA的去除起主导作用,HA去除率随过滤时间的增加而不断减小,吸附阶段CNTs预涂覆膜的跨膜压差(Transmembrane Pressure,TMP)始终保持在较低水平(不高于15 kPa),降低CNTs的径向尺寸和提高CNTs投加量,均有助于吸附去除HA;膜污染加速阶段,随着CNTs预涂覆膜进入膜污染加速阶段,HA的去除率由吸附阶段的不断降低开始出现上升拐点,TMP由于CNTs预涂覆膜的加快堵塞而不断升高;堵塞膜截留阶段,CNTs预涂覆低压膜在一定程度堵塞后,表现出截留去除HA的效能,且TMP仍保持在低压膜运行范围内,降低CNTs的径向尺寸,制备的预涂覆膜孔径小且分布均匀,有助于其提高截留去除HA的效能.整个恒流实验过程中,未负载CNTs的基膜对HA仅有微弱的吸附作用,且由于其较大的孔径,对HA的截留作用十分有限.本文通过对CNTs预涂覆低压膜吸附阶段和截留阶段的划分,明确了CNTs预涂覆低压膜在吸附饱和之后,能够有效截留水中HA,可作为水中腐殖质类污染物去除的一种有效手段.  相似文献   

9.
以钙基累托石原料制备壳聚糖插层累托石复合吸附剂,并通过红外光谱对其结果进行了表征.研究了复合吸附剂对Cu<'2+>的吸附,分别讨论了复合吸附剂的不同配比、搅拌时间、pH值、投加量和温度对吸附效果的影响.结果表明:当壳聚糖/累托石复合吸附剂1:3的配比,pH 6,吸附时间为30 min,投加量为0.75 g/L和温度为3...  相似文献   

10.
在固定床吸附实验台上对低温等离子改性前后的复合钙基吸附剂进行脱汞实验,深入探究SO2和O2对具有较高孔隙率和比表面积的复合钙基吸附剂脱汞性能的影响.并通过多种表征手段和方法分析复合钙基吸附剂对Hg0的吸附机理.实验结果表明,由于等离子改性提高了吸附剂表面的含氧官能团的相对含量,经等离子改性的复合钙基吸附剂的脱汞效率有明显提高.在N2+0.07% SO2+6% O2气氛下,吸附剂脱汞效率相比于无氧气氛由23.7%增至91.2%,吸附剂脱汞效率明显提高.此时吸附剂表面的羟基、酯基官能团作为主要反应活性位点,而羰基官能团的作用不明显.O2的存在促使活性炭表面由碳原子不饱和键形成的活性位增加,促进了Hg0的吸附,同时生成多种汞化合物.随着SO2浓度升至0.15%,改性复合钙基吸附剂表面活性位再次出现不足,此时SO2抢夺Hg0的吸附位点,脱汞效率降至23.3%.  相似文献   

11.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), elemental(CHN) analysis, Fourier transform infrared(FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO_2 capture.The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO_2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO_2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO_2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO_2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   

12.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   

13.
14.
The aggregation and dispersion behaviors of carbon nanotubes (CNTs) can regulate the environmental spread and fate of CNTs, as well as the organic pollutants adsorbed onto them. In this study, multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) were surface modified with humic acids from di erent sources and with surfactants of di erent ionic types. The dispersion stability of surface modified CNTs was observed by UV-Vis spectrophotometry. The e ect of humic acid and surfactant dispersion on the adsorption of atrazine by CNTs was investigated by batch equilibrium experiments. Both humic acid and surfactant could e ectively disperse MWNTs, but not SWNTs, into stable suspensions under the studied conditions. Surface modified CNTs had a greatly reduced capacity for adsorption of atrazine. The inhibitory e ect of peat humic acid was relatively stronger than that of soil humic acid, but the two surfactants had a similar inhibitory e ect on atrazine adsorption by the two CNT types. Increases in surfactant concentration resulted in rapid decreases in the adsorption of atrazine by CNTs when the surfactant concentration was less than 0.5 critical micelle concentration.  相似文献   

15.
Synthesised triphenylphosphine-linked multiwalled carbon nanotubes (Tpp-MWCNTs) were used to study the adsorption of nickel in aqueous solutions and their adsorption capabilities were compared with purified MWCNTs. The adsorption capacity increased with an increase in pH for all adsorbents. The adsorption equilibrium was reached in 40 and 30 min for purified MWCNTs and Tpp-MWCNTs, respectively. Both Freundlich and Langmuir isotherms used to investigate the adsorption process fitted the experimental data well with the correlation coefficient R2 close to 1 for all adsorbents. On the other hand, the experimental data fitted well with a pseudo second-order model. The speciation of nickel also influenced the adsorption on the purified and Tpp-MWCNTs. The adsorbents used in this study showed superior adsorption capacity when compared to other adsorbents reported in the literature.  相似文献   

16.
In order to study the influences of functionalized groups onto the adsorption of tetracycline (TC), we prepared a series of amino and amino–Fe3 + complex mesoporous silica adsorbents with diverse content of amino and Fe3 + groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction, Fourier transform infrared spectrometer and N2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe3 + groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe3 + increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe3 + content increased from 3.93% to 8.26%, the Qmax of the adsorbents increased from 102 to 188 mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

17.
In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25–65°C and inlet CO2 concentration range of 10–30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm3/g and surface area of 1400 m2/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.  相似文献   

18.
Coagulation followed by sedimentation, as a conventional technique in the water treatment plant, can be the first line of defense against exposures of carbon nanotubes (CNTs) to aquatic organisms and human beings, which has been rarely documented. This study investigated the removal of dispersant-stabilized CNT suspensions by poly aluminum chloride (PACl) and KAl(SO4)2. 12H2O (alum), with a focus on the effects of dispersant type, coagulant type and dosage. PACl performed better than alum in the removal of tannic acid-, humic acid-, and sodium dodecyl benzenesulfonate-stabilized CNTs, but worse for polyethylene glycol octylphenyl ether (TX100)-stabilized CNTs. Neither coagulant could effectively precipitate cetyltrimethyl ammonium bromide-stabilized CNTs. The removal by PACl first increased up to a plateau and then decreased with the continued increase of coagulant dosage. However, the removal rates leveled off but did not decrease after achieving their highest level with the continued addition of alum. The coagulation and flocculation of the CNT suspensions by PACl could be regulated mainly by the mechanism of adsorption charge neutralization, whereas the coagulation by alum mainly involved electrical double-layer compression.  相似文献   

19.
The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qm /SSA) and SSA-normalized adsorption coefficient (Kd /SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (△ G0 ) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (△ H0 ), G0 and free energy of adsorption (Ea ), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and K d /SSA or q m /SSA.  相似文献   

20.
活性炭吸附有机蒸气性能的研究   总被引:5,自引:4,他引:1  
蔡道飞  黄维秋  王丹莉  张琳  杨光 《环境科学》2013,34(12):4694-4700
吸附法在油气回收技术中运用很广泛.吸附剂的选择对吸附分离效果起到了决定性作用.选用3种商用活性炭,以正己烷和正庚烷为吸附质,在温度为293.15 K下进行了静态和动态吸附实验,并研究了活性炭孔结构对其吸附性能和吸附能的影响,同时利用Logistic模型的回归公式对活性炭的吸附穿透曲线进行拟合.结果表明,活性炭的比表面积和孔容是其吸附性能主要影响因素;正己烷和正庚烷的吸附行均符合Langmuir吸附等温模型;3种活性炭对正己烷和正庚烷的吸附能都随其比表面积变大而变大;Logistic模型拟合曲线与实验结果具有高度相似性,可用于活性炭吸附穿透曲线的预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号