首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residence time-dependent distribution patterns of hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT) among different soil organic matter fractions of three Chinese soils were investigated. Soil organic matter (SOM) was fractionated into fulvic acid (FA), humic acid (HA), bound-humic acid (BHA), lipid, and insoluble residue (IR) fractions using methyl isobutyl ketone (MIBK) method. Results revealed that as the residence time prolonged, the amounts of HCB and DDT in the FA, HA and BHA fractions decreased, while those in the lipid and IR fractions increased. One- and two-compartment first order, and one- and two-parameter pore-diffusion kinetic models were used to describe the mobility of HCB and DDT from the FA, HA and BHA fractions. The results suggest that excellent agreements were achieved between the experimental data and fits to the two-compartment first order kinetic model (R2>0.97). The transfer rates of HCB and DDT followed the order FA>HA>BHA.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Aside from total organic carbon, the ratio among the different organic matter fractions [dissolved organic matter, fulvic acid (FA), humic acid (HA) and humin] can also affect the mobility of these hydrocarbons in soils. In this study the effect of the whole organic carbon pool has been compared with that of HA and FA on the translocation of four PAHs (biphenyl, fluorene, phenanthrene and pyrene) in soil columns. Oxidized and untreated soil columns with and without HA or FA, were prepared, spilled with hydrocarbons and leached with a 0.01 M CaCl2 solution. The influence of HA and FA on PAH translocation was investigated through determinations of the PAH contents and total organic carbon (TOC) in the layers of the columns. All molecules were moved vertically by the percolating solutions, their concentrations decreasing with depths. The nonoxidized soil tended to retain more PAHs (96%) than the oxidized one (60%), confirming that organic matter plays an important role in controlling PAH leaching. The whole organic matter pool reduced the translocation of pollutants downward the profile. The addition of HA enhanced this behaviour by increasing the PAH retention in the top layers (7.55 mg and 4.00 mg in the top two layers, respectively) while FA increased their mobility (only 2.30 and 2.90 mg of PAHs were found in the top layers) and favoured leaching. In fact, in the presence of HA alone, the higher amounts of PAHs retained at the surface and the good correlation (r2=0.936) between TOC and hydrocarbon distribution can be attributed to a parallel distribution of PAHs and HA, while in the presence of FA, the higher mobility of PAHs can be attributed to the high mobility of the humic material, as expected by its extensive hydrophilic characteristics.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Aside from total organic carbon, the ratio among the different organic matter fractions [dissolved organic matter, fulvic acid (FA), humic acid (HA) and humin] can also affect the mobility of these hydrocarbons in soils. In this study the effect of the whole organic carbon pool has been compared with that of HA and FA on the translocation of four PAHs (biphenyl, fluorene, phenanthrene and pyrene) in soil columns. Oxidized and untreated soil columns with and without HA or FA, were prepared, spilled with hydrocarbons and leached with a 0.01 M CaCl2 solution. The influence of HA and FA on PAH translocation was investigated through determinations of the PAH contents and total organic carbon (TOC) in the layers of the columns. All molecules were moved vertically by the percolating solutions, their concentrations decreasing with depths. The non-oxidized soil tended to retain more PAHs (96%) than the oxidized one (60%), confirming that organic matter plays an important role in controlling PAH leaching. The whole organic matter pool reduced the translocation of pollutants downward the profile. The addition of HA enhanced this behaviour, by increasing the PAH retention in the top layers (7.55 mg and 4.00 mg in the top two layers, respectively) while FA increased their mobility (only 2.30 and 2.90 mg of PAHs were found in the top layers) and favoured leaching. In fact, in the presence of HA alone, the higher amounts of PAHs retained at the surface and the good correlation (r2=0.936) between TOC and hydrocarbon distribution can be attributed to a parallel distribution of PAHs and HA, while in the presence of FA, the higher mobility of PAHs can be attributed to the high mobility of the humic material, as expected by its extensive hydrophilic characteristics.  相似文献   

4.
Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation.  相似文献   

5.
Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.  相似文献   

6.
The humic acid (HA) fraction of a food and vegetable residues compost (CM) was taken as indicator to trace the fate of CM organic matter in four years CM amended soil. (1)H and (13)C NMR spectroscopy were used to investigate the nature of the HA isolates from CM, control soil (S(4)) and amended soil. The result indicated a significant structural difference between CM HA and S(4) HA, and supported the presence of both HA fractions in soil at the end of the amendment trials. However, the nature and content of CM HA in soil did not fully explain the increase of soil cation exchange capacity (CEC) after amendment. All CM humic fractions (i.e., fulvic acid, humic acid and humin) were found to contribute to the change of the soil organic matter composition. It is concluded that although CM HA is a suitable indicator of the survival of compost organic matter in soil during amendment, all three humic fractions should be monitored and analyzed to fully understand changes in the composition and properties of amended soil.  相似文献   

7.
The knowledge on the distribution of hydrophobic organic contaminants in soils can provide better understanding for their fate in the environment. In the present study, the n-butanol extraction and humic fractionation were applied to investigate the impact of SOM on the distribution of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 80.5%-94.8% of the target PAHs could be extracted by n-butanol and 63.1%-94.6% of PAHs were associated with fulvic acid (FA). Concentrations of un-extracted PAHs increased significantly with the increasing soil organic matter (SOM), however, such an association was absent for the extractable fractions. The results suggested that the sequestration played a critical role in the accumulation of PAHs in soils. SOM also retarded the diffusion of PAHs into the humin fractions. It implied that sequestration in SOM was critical for PAH distribution in soils, while the properties of PAH compounds also had great influences.  相似文献   

8.
Changes in soil organic matter chemical properties after organic amendments   总被引:1,自引:0,他引:1  
Sebastia J  Labanowski J  Lamy I 《Chemosphere》2007,68(7):1245-1253
Organic inputs are used to improve soil physical and chemical properties, but the corresponding changes in soil organic matter (SOM) chemical properties are not well known. In this study, we compared some characteristics of the SOM of a soil receiving either no organic inputs, or two different amendments during 15 years (straw or conifer compost). Quantities of organic carbon and C/N values were determined on particle size fractions after physical soil fractionation to localize changes due to amendments. Contents in reactive functional groups, acid-base properties and copper binding affinities were determined by titration experiments for the soluble fraction of SOM: the fulvic acid fraction (FA). Data of FA extracted from the bulk soil were compared to data of FA extracted from the <20 microm size fraction with the help of either a discrete or a continuous model (fit of data with FITEQL or NICA, respectively). Copper binding characteristics of FA extracted from the <20 microm size fraction did not change significantly after organic inputs, while those of FA extracted from the bulk organic-amended soils were found different from the ones with no amendment. Minor effects observed in the finer soil fractions were ascribed to their low turn-over of organic carbon and/or to a greater homogeneity in the nature of the organic carbon entering these fractions. Our results show major chemical changes in coarser soil organic fractions after organic amendments.  相似文献   

9.
The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability.  相似文献   

10.
Wang SQ  Zhou DM  Wang YJ  Chen HM 《Chemosphere》2003,51(2):77-83
A study was carried out of Cu adsorption and desorption processes in red soil as affected by o-phenylenediamine (o-PD) in the range 0-80 mg/l. The results indicated that the presence of o-PD enhanced Cu adsorption in red soil in weakly acid media, meanwhile, desorption percentage of Cu from soil, extracted by 1.0 M MgCl(2), also increased when Cu adsorption in soil occurred in the presence of o-PD. The response of paddy rice to Cu in red soil shows that Cu toxicity was mitigated in the presence of o-PD and that the Cu concentration in rice straw decreased with increasing concentration of o-PD from 0 to 4.0 mmol/kg in soil. The fractions of background Cu in soil did not change noticeably in the presence of o-PD, whereas the effect of o-PD on the fractions of added Cu was significant. It was found that the exchangeable and carbonate bound Cu fractions decreased and the fraction of Cu bound to Fe-Mn oxides and organic matter increased with increasing o-PD concentration in soil when Cu was added at the same rate. Copper concentration in rice straw was significantly correlated with exchangeable Cu (r=0.961) and carbonate bound Cu (r=0.959) in soil. This result implicates that the behavior of Cu in soil is likely to be affected by organic pollutants containing amino groups.  相似文献   

11.
Tsang DC  Zhang W  Lo IM 《Chemosphere》2007,68(2):234-243
Ethylenediaminetetraacetic acid (EDTA) was used as a reference chelating agent in column experiments to investigate the effectiveness of chelant-enhanced flushing of soils artificially contaminated under various conditions (low/high Cu loading, and aging). The associated soil dissolution issues were of particular concern. Dissolution of indigenous Fe/Al oxides, Ca carbonates and organic matter was monitored over the course of flushing. Regardless of contamination condition, above 85% extraction efficiency could be accomplished by 10(-2) and 10(-3)M EDTA-flushing, but not 10(-4)M. The Cu extraction kinetics positively correlated to EDTA concentration but inversely to Cu loading in soils. In addition to extraction from weakly sorbed fractions, a large portion of Cu was extracted from oxide, organic matter and residual fractions, which appears to derive from soil dissolution. Cumulative dissolved amounts of Fe, Al, and Ca were found to reach as high as hundreds of mgkg(-1), which were comparable to Cu contamination. Soil organic matter, which is known to strongly interact with Fe and Al oxides, was also mobilized. The rate and extent of these soil dissolutions were also positively correlated to EDTA concentration. Therefore, the co-extraction of soil minerals and organic matter during chelant-enhanced flushing, which would alter both physical structure and chemical properties of the soils, is detrimental to future land use and deserves greater attention. The concentration of chelating agent is the most crucial factor for an effective soil flushing with minimal damage.  相似文献   

12.
Environmental implications of soil remediation using the Fenton process   总被引:2,自引:0,他引:2  
This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880mgl(-1) after 64h of reaction and the DDT concentration increased from 12 to 50microgl(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied.  相似文献   

13.
Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (μ-XRF). The XANES and EXAFS spectra in all of the soils were the same. μ-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups.  相似文献   

14.
Long-term effect of sewage sludge application on soil humic acids   总被引:4,自引:0,他引:4  
Adani F  Tambone F 《Chemosphere》2005,60(9):1214-1221
Sewage sludges are used in agriculture because they act as a fertilizer. Long-term studies are needed to evaluate the effect of sewage sludge on soil properties by paying particular attention to the soil organic matter. Soil plots were amended for 10 years with 1Mg dry matter ha(-1)year(-1) of sewage sludge. Chemical parameters such as total organic carbon (TOC), N, C/N ratio and CEC were determined when this period ended. Moreover, TOC was fractionated into humified and non-humified fractions. Humic acids (HA) were isolated and studied by elemental analysis, DRIFT, (1)H NMR and CPMAS 13C NMR spectroscopies. At the end of the tests, compared to the control soil, the sludge-amended soil did not exhibit change in total organic C and related humified fractions. However, the HA composition of the soil treated with sludge had developed an HA composition closer to that of the HA-sludge as a result of the enrichment of recalcitrant fractions contained in the sludge.  相似文献   

15.
Ding G  Novak JM  Herbert S  Xing B 《Chemosphere》2002,48(9):897-904
Sorption and desorption are two important processes that influence the amount of pesticides retained by soils. However, the detailed sorption mechanisms as influenced by soil tillage management are unclear. This study examined the sorption and desorption characteristics of metolachlor [2-chloro-N-(2-ethyl-6-methyphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] using the soil samples collected from the long-term conservation tillage (CnT) and conventional tillage (CT) research plots established in 1979 in Darlinton, SC. Humic acid (HA) and humin were extracted from the soils and used in the sorption experiments along with the whole soil samples. The sorption experiments were conducted using a batch-equilibration method. Three sequential desorption rinses were carried out following the sorption experiments. By comparing metolachlor sorption and desorption results we observed hysteresis for all soil samples and their organic matter fractions. Sorption nonlinearity (N) and hysteresis were dependent on the structure and composition of soil organic matter (SOM), e.g., Freundlich isotherm exponents (N) of HA and humin from CnT were higher than those of CT treatment, which may be related to high aromaticity of SOM fractions in CT treatment. Sorption capacity (K'f) was positively correlated with soil organic carbon (SOC) content. These results show that long-term tillage management can greatly affect metolachlor sorption and desorption behavior probably by qualitative differences in the structural characteristics of the humic substances.  相似文献   

16.
Zhang W  Zhuang L  Tong L  Lo IM  Qiu R 《Chemosphere》2012,86(8):809-816
Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation.  相似文献   

17.
This study investigated the influence of dissolved and soil organic matter on metal extraction from an artificially contaminated soil. With high concentration of DOM, the extraction of Cu, Zn and Pb was enhanced by forming additional metal-EDDS complexes under EDDS deficiency. However, the enhancement of metal extraction under EDDS excess was probably due to the soil structure being disrupted owing to humic acid enhanced Al and Fe dissolution, which induced more metals dissolving from the soils. Fulvic acid was found to enhance metal extraction to a greater extent compared with humic acid because of its high content of the carboxylic functional group. Cu extraction from the soil with high organic matter content using EDDS was the lowest due to the high binding affinity of Cu to SOM, whereas Zn extraction became the highest because of a preference for EDDS to extract Zn due to the high stability constant of ZnEDDS.  相似文献   

18.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

19.
The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 degrees C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 microm) supernatants. For the samples equilibrated at 90 degrees C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 microm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 degrees C; however, at 90 degrees C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 degrees C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu was complexing with large polymers that could form at the elevated temperature, and thus be removed from the analyzed solution. It is possible that Cu and Al released by SOM oxidation has re-sorbed or complexed to more recalcitrant organic matter or to mineral phases. Variations in the relative molecular size fractions present within the DOC pool produced by increased time and temperature may influence the element-DOC complexes present in solution and their behavior in soil environments.  相似文献   

20.
The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号