首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Previous studies demonstrated that short-term exposure to gaseous pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3)) had a greater adverse effect on cardiovascular disease. However, little evidence exists regarding the synergy between gaseous pollutants and cardiovascular disease (CVD). Therefore, we aimed to estimate the effect of individual gaseous pollutants on hospital admissions for CVD and to explore the possible synergistic effects between gaseous pollutants. Daily hospitalization counts for CVD were collected from January 1, 2014, to December 31, 2015. We also collected daily time series on gaseous pollutants from the Environment of the People’s Republic of China, including NO2, SO2, and O3. We used distributed lag nonlinear models (DLNMs) to assess the association of individual gaseous pollutants on CVD hospitalization, after controlling for seasonality, day of the week, public holidays, and weather variables. Then, we explored the variability across age and sex groups. In addition, we analyzed the synergistic effects between gaseous pollutants on CVD. Extremely low NO2 and SO2 increase the risk of CVD in all subgroup at lag 7 days. The greatest effect of high concentration of SO2 was observed in male and the elderly (≥ 65 years) at lag 3 days. Greater effects of high concentration of O3 were more pronounced in the young (< 65 years) and female at lag 3 days, while the effect of low concentration of O3 was greater in male and the young (< 65 years) at lag 0 day. We found a synergistic effect between NO2 and SO2 for CVD, as well as between SO2 and O3. The synergistic effects of NO2 and SO2 on CVD were stronger in the elderly (≥ 65) and female. The female was sensitive to synergistic effects of SO2-O3 and NO2-O3. Interestingly, we found that there was a risk of CVD in the susceptible population even for gaseous pollutant concentrations below the National Environmental Quality Standard. The synergy between NO2 and SO2 was significantly associated with cardiovascular disease hospitalization in the elderly (≥ 65). This study provides evidence for the synergistic effect of gaseous pollutants on hospital admissions for cardiovascular disease.

  相似文献   

2.
Environmental Science and Pollution Research - Cardiovascular diseases (CVD) caused by household air pollution (HAP) have sparked widespread concern globally in the recent decade. Meanwhile,...  相似文献   

3.
Environmental Science and Pollution Research - Evidence showing the association of perfluoroalkylated substance (PFAS) exposure with CVD risk is scarce. The objective of this study was to explore...  相似文献   

4.
Environmental Science and Pollution Research - Few detailed, individual-focused studies have researched the added effect of temperature on cardiovascular disease (CVD), particularly in China....  相似文献   

5.

Numerous studies have investigated the impacts of ambient fine particulate matter (PM2.5) on human health. In this study, we examined the association of daily PM2.5 concentrations with the number of deaths for the cerebrovascular disease on the same day, using the generalized additive model (GAM) controlling for temporal trend and meteorological variables. We used the data between 2012 and 2014 from Shanghai, China, where the adverse health effects of PM2.5 have been of particular concern. Three different approaches (principal component analysis, shrinkage smoothers, and the least absolute shrinkage and selection operator regularization) were used in GAM to handle multicollinear meteorological variables. Our results indicate that the average daily concentration of PM2.5 in Shanghai was high, 55 μg/m3, with an average daily death for cerebrovascular disease (CVD) of 62. There was 1.7% raised cerebrovascular disease deaths per 10 μg/m3 increase in PM2.5 concentration in the unadjusted model. However, PM2.5 concentration was no longer associated with CVD deaths after controlling for meteorological variables. The results were consistent in the three modelling techniques that we used. As a large number of people are exposed to air pollution, further investigation with longer time period including individual-level information is needed to examine the association.

  相似文献   

6.
Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal–organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.  相似文献   

7.

Supported Fe2O3/WO3 nanocomposites were fabricated by an original vapor phase approach, involving the chemical vapor deposition (CVD) of Fe2O3 on Ti sheets and the subsequent radio frequency (RF)-sputtering of WO3. Particular attention was dedicated to the control of the W/Fe ratio, in order to tailor the composition of the resulting materials. The target systems were analyzed by the joint use of complementary techniques, that is, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy. The results showed the uniform decoration of α-Fe2O3 (hematite) globular particles by tiny WO3 aggregates, whose content could be controlled by modulations of the sole sputtering time. The photocatalytic degradation of phenol in the liquid phase was selected as a test reaction for a preliminary investigation of the system behavior in wastewater treatment applications. The system activity under both UV and Vis light illumination may open doors for further material optimization in view of real-world end-uses.

  相似文献   

8.
This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm3 for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter.

Implications: As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.  相似文献   

9.
A two-generation reproductive toxicity study of zinc chloride (ZnCl(2)) was conducted in rats. F(o) male and female rats were administered 0.00 (control), 7.50 (low), 15.00 (mid) and 30.00 (high) mg/kg/day of ZnCl(2). Selected F(1) male and female rats were exposed to the same doses received by their parents (F(o)). Exposure of F(0) parental rats to ZnCl(2) showed significant reduction in fertility, viability (days 0 and 4), and the body weight of F(1) pups from the high-dose group but caused no effects on litter size, weaning index, and sex ratio. Similarly, the continued exposure of F(1) parental rats to ZnCl(2) also reduced fertility, liter size, viability (day 0), and the body weight of F(2) pups within the high-dose group but caused no effects on weaning index and sex ratio. Exposure of ZnCl(2) to F(0) and F(1) parental males resulted in a significant reduction in their body weights, and the F(0) and F(1) parental females did not show any significant difference in their body weights compared to their control groups. However, the postpartum dam weights of both F(0) and F(1) female rats were significantly reduced compared to their controls. Exposure of ZnCl(2) to F(o) and F(1) generation parental rats did not produce any significant change of their clinical signs as well as their clinical pathology parameters, except the alkaline phosphotase (ALK) level, which showed an upward trend in both sexes of both generations. Exposure of ZnCl(2) to F(0) rats resulted in a reduction of brain, liver, kidney, spleen and seminal vesicles weights of males and in the spleen and uterus of females. Similarly, exposure of F(1) rats to ZnCl(2) also resulted in reduction of brain, liver, kidney, adrenal, spleen, prostate and seminal vesicles weights of males and in spleen and uterus of females. ZnCl(2) exposure resulted in grossly observed gastro-intestianla (GI) tract, lymphoreticular/hematopoietic, and reproductive tract lesions in parental rats in both generations. Reduced body fat was also recorded in F(1) parental rats.  相似文献   

10.
Benzo(a)pyrene [B(a)P] air levels were measured in Florence (Italy) in the period 1992-2001. For the period 1999-2000 seven polycyclic aromatic hydrocarbons (PAH) (benzo(a)anthracene, crysene, benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene, dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP)), were measured in the air in four different sites (one with heavy traffic (A), one in a park (B), one in a residential area (C) and one in a hill area (D)). B(a)P levels were elevated in 1992-1998 (maximum average value of winter months: 5.8 ng/ m3) but a decreasing trend was observed in the following years, probably due to improvement in vehicle emissions. The sum of PAH in the air in the period 1999-2000 was about one order of magnitude lower in the hill site (D) relative to the urban sites, and residential areas (B and C) had values 2.5-3 times lower compared to site A with a heavy traffic. PAH concentrations decreased in the warmer seasons of 2000 in all sites. A negative correlation was found between PAH levels and ozone. A positive correlation with carbon monoxide (CO) (r = 0.862, P < 0.001) and low B(a)P/BGP ratios, ranging from 0.44 to 0.51, indicated that vehicular traffic was the major PAH source in all monitored sites. Using B(a)P(TEF) values (toxic equivalency factors) for evaluating the biological activity of PAH, we found that the highest PAH contributors in terms of potential air carcinogenic activity were B(a)P and DBA. Therefore, in addition to B(a)P, DBA concentration should be considered in the evaluation of air quality in terms of PAH contamination.  相似文献   

11.
Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.  相似文献   

12.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

13.
Huang PC  Tien CJ  Sun YM  Hsieh CY  Lee CC 《Chemosphere》2008,73(4):539-544
Phthalate compounds in sediments and fishes were investigated in 17 Taiwan's rivers to determine the relationships between phthalate levels in sediment and aquatic factors, and biota-sediment accumulation factor (BSAF) for phthalates. Mean concentrations (range) of di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBzP) and di-n-butyl phthalate (DBP) in sediment at low-flow season were 4.1 (<0.05-46.5), 0.22 (<0.05-3.1) and 0.14 (<0.05-1.3)mgkg(-1)dw; those at high-flow season were 1.2 (<0.05-13.1), 0.13 (<0.05-0.27) and 0.09 (<0.05-0.22)mgkg(-1)dw, respectively. Trace levels of dimethyl phthalate (DMP), diethyl phthalate (DEP) and di-n-octyl phthalate (DOP) in sediment were found in both seasons. Concentrations of DEHP in sediments were significantly affected by temperature, suspended solids, ammonia-nitrogen, and chemical oxygen demand. The highest concentration of DEHP in fish samples were found in Liza subviridis (253.9mgkg(-1)dw) and Oreochromis miloticus niloticus (129.5mgkg(-1)dw). BSAF of DEHP in L. subviridis (13.8-40.9) and O. miloticus niloticus (2.4-28.5) were higher than those in other fish species, indicating that the living habits of fish and physical-chemical properties of phthalates, like logKow, may influence the bioavailability of phthalates in fish. Our data suggested that DEHP level in river sediments were influenced by water quality parameters due to their effects on the biodegradation processes, and that the DEHP level in fish was affected by fish habitat and physiochemical properties of polluted contaminants.  相似文献   

14.
Three novel halogenated organic compounds (HOCs) have been identified in the blubber of marine mammals from coastal New England with the molecular formulae C(9)H(3)N(2)Br(6)Cl, C(9)H(3)N(2)Br(7), and C(9)H(4)N(2)Br(5)Cl. They were identified using high and low resolution gas chromatography mass spectrometry (GCMS) and appear to be highly brominated analogues of Q1, a heptachlorinated HOC suspected to be naturally produced. These compounds were found in Atlantic white sided dolphin (Lagenorhynchus acutus), bottlenose dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena), beluga whale (Delphinapterus leucas), fin whale (Balaenoptera physalus), grey seal (Halichoerus grypus), harp seal (Phoca groenlandica) and a potential food source (Loligo pealei) with concentrations as high as 2.7 microg/g (lipid weight). The regiospecificity of C(9)H(3)N(2)Br(6)Cl is suggestive of a biogenic origin. Debromination of C(9)H(3)N(2)Br(6)Cl may be significant in the formation of C(9)H(4)N(2)Br(5)Cl.  相似文献   

15.
Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) bioaccumulate through the food chain and are therefore of public health concern. Exposure to these compounds was assessed in the second French Total Diet Study (TDS). Food samples (n=583) were collected to be representative of the whole diet of the population, prepared as consumed, and analyzed. Contamination data were combined with national individual food consumption data. Mean exposure (95th percentile) to PCDD/F+DL-PCBs was assessed to be 0.57 (1.29) pg TEQ(WHO-98) (kg bw)(-1) d(-1) in the adult population and 0.89 (2.02) pg TEQ(WHO-98) (kg bw)(-1) d(-1) in the child and teenager population. Less than 4% of the population exceeded the health-based guidance value for PCDD/F+DL-PCBs. Mean exposure (95th percentile) to the six indicator PCBs (PCB 28, 52, 101, 138, 153, 180) was estimated at 2.71 (7.90) ng (kg bw)(-1) d(-1) in the adult population and 3.77 (11.7) ng (kg bw)(-1) d(-1) in the child and teenager population. Only 2.6% of the adults [CI(95%): 1.9; 3.3] and 6.5% of the children and teenagers [5.2; 7.8] exceeded the health-based guidance value for total PCBs. These results show that the contamination levels in food and therefore the exposure of the general French population to PCDD/Fs and PCBs have declined (by a factor of 3.2 for PCDD/F+DL-PCBs and about three for total PCBs) since the last evaluation, which was conducted using another methodology in 2005 and 2007, and show the efficiency of the European risk management measures which came into force after these evaluations.  相似文献   

16.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   

17.
Seventeen polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were quantified in adipose tissue samples of non-occupationally exposed women living in Southern Spain. Geometric mean levels of sum of congeners and WHO(PCDD/F)-TEQ(2005) were 410 and 17.9pgg(-1) fat, respectively. Among PCDDs, octachlorodibenzo-p-dioxin (OCDD) showed the highest concentration with a mean value of 265pgg(-1) fat, followed by 1,2,3,6,7,8-HxCDD (49.3pgg(-1) fat) and 1,2,3,4,6,7,8-HpCDD (45.2pgg(-1) fat). These three congeners were responsible for around 90% of the sum of all PCDD/F congeners in adipose tissue. The geometric mean 2,3,7,8-TCDD value was 1.87pgg(-1) fat. 2,3,4,7,8-PeCDF (8.43pgg(-1) fat) showed the highest concentration among the PCDFs, followed by 1,2,3,4,7,8-HxCDF (4.17pgg(-1) fat) and 1,2,3,6,7,8-HxCDF (3.28pgg(-1) fat), and these three congeners were responsible for 4% of the sum of all studied PCDD/F congeners in adipose tissue and 76% of the sum of ten PCDFs. 1,2,3,7,8,9-HxCDF was the only congener not quantified in any sample, while 1,2,3,4,7,8,9-HpCDF, 1,2,3,7,8-PeCDF, OCDF and 2,3,7,8-TCDF were found in 5, 16, 16 and 19 samples, respectively. All other congeners were quantifiable in all 20 samples. Congeners contributing most to the WHO(PCDD/F)-TEQ(2005) were 1,2,3,7,8-PeCDD (31.6%), 1,2,3,6,7,8-HxCDD (28.3%) and 2,3,4,7,8-PeCDF (14.6%). The body burden of log-transformed WHO(PCDD/F)-TEQ(2005) levels increased with age (B=0.02; 95% CI=0.01, 0.03; p=0.02). Although these adipose tissue PCDD/F levels are similar to previously published findings in Spain and other European countries, further research is needed to determine trends in the exposure of women to these chemical residues.  相似文献   

18.
Potted seedlings of black cherry (Prunus serotina Ehrh.) (BC), green ash (Fraxinus pennsylvanica Marsh.) (GA), and yellow-poplar (Liriodendron tulipifera L.) (YP) were exposed to one of the four treatments: (1) charcoal-filtered air (CF) at ambient CO(2) (control); (2) twice ambient O(3) (2 x O(3)); (3) twice ambient CO(2) (650 microl l(-1)) plus CF air (2 x CO(2)); or (4) twice ambient CO(2) (650 microl l(-1)) plus twice ambient O(3) (2 x CO(2) + 2 x O(3)). The treatments were duplicated in eight continuously stirred tank reactors for 10 weeks. Gas exchange was measured during the last 3 weeks of treatment and all seedlings were destructively harvested after 10 weeks. Significant interactive effects of O(3) and CO(2) on the gas exchange of all three species were limited. The effects of elevated CO(2) and O(3), singly and combined, on light-saturated net photosynthesis (A(max)) and stomatal conductance (g(s)) were inconsistent across species. In all three species, elevated O(3) had no effect on g(s). Elevated CO(2) significantly increased A(max) in GA and YP foliage, and decreased g(s) in YP foliage. Maximum carbon exchange rates and quantum efficiencies derived from light-response curves increased, while compensation irradiance and dark respiration decreased in all three species when exposed to 2 x CO(2). Elevated O(3) affected few of these parameters but any change that was observed was opposite to that from exposure to 2 x CO(2)-air. Interactive effects of CO(2) and O(3) on light-response parameters were limited. Carboxylation efficiencies, derived from CO(2)-response curves (A/C(i) curves) decreased only in YP foliage exposed to 2 x CO(2)-air. In general, growth was significantly stimulated by 2 x CO(2) in all three species; though there were few significant growth responses following exposure to 2 x O(3) or the combination of 2 x CO(2) plus 2 x O(3). Results indicate that responses to interacting stressors such as O(3) and CO(2) are species specific.  相似文献   

19.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

20.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号