首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Berm-isolated (0.5 ha) plots have been used since 1995 to quantify changes in soil and water quality with conversion from agricultural to bioenergy crops. Soil quality improvements, including increases in soil carbon storage, have occurred on sites planted to woody or herbaceous species, and no-till corn compared with tilled corn or cotton. Initial increases in soil carbon occurred within the upper 10 cm of the soil profile. Soil carbon on plantings of switchgrass, no-till corn, and sweetgum with a cover crop between the rows increased over the first 3 years. Soil carbon decreased by 6% on the sweetgum plantings without a cover crop and remained lower through the fifth growing season. Overall, the greatest increases in below ground carbon storage have occurred primarily within the upper 40 cm. Former land use, growth characteristics, management practices, and soil characteristics appear to be the primary factors determining the timing, depth. and extent of changes in soil carbon storage for bioenergy and no-till crops.  相似文献   

3.
Environmental Science and Pollution Research - Globally, various types of soil amendments have been used to improve the fertility and quality of soils in agricultural lands. In heavy metal(loid)...  相似文献   

4.
Environmental Science and Pollution Research - Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating...  相似文献   

5.
Kumar A  Pandey AK  Singh SS  Shanker R  Dhawan A 《Chemosphere》2011,83(8):1124-1132
Extensive production and consumption of nanomaterials such as ZnO and TiO2 has increased their release and disposal into the environment. The accumulation of nanoparticles (NPs) in ecosystem is likely to pose threat to non-specific targets such as bacteria. The present study explored the effect of ZnO and TiO2 NPs in a model bacterium, Salmonella typhimurium. The uptake of ZnO and TiO2 bare NPs in nano range without agglomeration was observed in S. typhimurium. TEM analysis demonstrated the internalization and uniform distribution of NPs inside the cells. Flow cytometry data also demonstrates that both ZnO and TiO2 NPs were significantly internalized in the S. typhimurium cells in a concentration dependent manner. A significant increase in uptake was observed in the S. typhimurium treated even with 8 and 80 ng mL−1 of ZnO and TiO2 NPs with S9 after 60 min, possibly the formation of micelles or protein coat facilitated entry of NPs. These NPs exhibited weak mutagenic potential in S. typhimurium strains TA98, TA1537 and Escherichia coli (WP2uvrA) of Ames test underscoring the possible carcinogenic potential similar to certain mutagenic chemicals. Our study reiterates the need for re-evaluating environmental toxicity of ZnO and TiO2 NPs presumably considered safe in environment.  相似文献   

6.
Agricultural soils of two Italian maize farms were treated for five years with an industrially produced high-quality compost. Cattle manure and the usual mineral fertilizer were used for comparison purposes. The effects of the organic and mineral fertilizer treatments were studied by analyzing the compost and manure, cultured soils, and harvested material. The grain yield was also determined. Organic fertilization improved soil pH, CEC, content of organic matter and NPK. Soil respiration and N mineralization were found to be higher than in the purely mineral-treated soil. Plant K take-up was improved, whereas grain yield was not affected. It was confirmed that organic fertilization, particularly compost use, maintained and increased soil fertility. The study demonstrated the feasibility of using in loco analytical facilities to follow the entire recycling process-from waste to compost production-and the use of the final product in the field.  相似文献   

7.
Volatilisation of crop protection chemicals from soil and crop surfaces is one of a number of processes that may contribute to their dissipation in the environment. Therefore, information on the potential of a chemical to volatilise from these surfaces is required by international and national registration authorities. This paper reports the results of more than 190 experiments, which were carried out with 80 different crop protection chemicals under controlled conditions (laboratory and/or greenhouse) according to the BBA guideline. Percent loss values observed during 24 h after application are reported for 123 soil and 71 crop volatility studies. Generally, volatile losses from crop surfaces were found to be greater than from soil surfaces under comparable experimental conditions. It has been previously proposed that volatile losses from soil surfaces, from crops, and from aqueous systems can be estimated from physico-chemical parameters. The data are therefore analysed to determine whether a correlation exists between volatilisation and physico-chemical parameters, such as vapour pressure, Henry's law constant, water/air and soil/air distribution coefficients. It was found that these parameters can be used to make reasonable predictions of volatile losses from crop and soil surfaces, which can be expected for crop protection chemicals under controlled conditions. Vapour pressure was the best predictor of losses from soil and crops. The use of the soil/air distribution coefficient is an alternative for predicting/estimating the volatility potential of a chemical from soil. Based on direct measurements, no noticeable volatility can be expected from compounds with a vapour pressure below 10(-3) Pa from soil and 10(-4) Pa from crops, this is fully confirmed by indirect measurements. A tiered volatility testing scheme including appropriate trigger values is proposed.  相似文献   

8.
Saadi I  Laor Y  Raviv M  Medina S 《Chemosphere》2007,66(1):75-83
Extremely high organic load and the toxic nature of olive mill wastewater (OMW) prevent their direct discharge into domestic wastewater treatment systems. In addition to the various treatment schemes designed for such wastewater, controlled land spreading of untreated OMW has been suggested as an alternative mean of disposal. A field study was conducted between October 2004 and September 2005 to assess possible effects of OMW on soil microbial activity and potential phytotoxicity. The experiment was carried out in an organic orchard located on a Vertisol-type soil (Jezre'el Valley, Israel) and included two application levels of OMW (36 and 72m(3)ha(-1)). Total microbial counts, and to less extent the hydrolytic activity and soil respiration were increased following the high OMW application level. A bench-scale lab experiment showed that the rate of OMW mineralization was mainly dependent on the general status of soil activity and was not related to previous acclimatization of the soil microflora to OMW. Soil phytotoxicity (% germination and root elongation) was assessed in soil extracts of samples collected before and after each OMW application, using germinating cress (Lepidium sativum L.) seeds. We found direct short-term effect of OMW application on soil phytotoxicity. However, the soil was partly or completely recovered between successive applications. No further phytotoxicity was observed in treated soils as compared with control soil, 3 months after OMW application. Such short-term phytotoxicity was not in correlation with measured EC and total polyphenols in the soil extracts. Overall, the results of this study further support a safe controlled OMW spreading on lands that are not associated with sensitive aquifers.  相似文献   

9.
Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.  相似文献   

10.
Biological research has established that air pollution can affect the yield and quality of agricultural crops. Economic assessments of crop exposure to air pollution have focused on the yield effect. This study illustrates the implications of considering crop quality effects in addition to crop yield changes for the case of O3 impacts on soybeans. An economic model of US soybean, soybean oil, and soybean meal markets is used to simulate the impacts of increased soybean yields due to reduced O3 concentrations with and without changes in soybean quality. The simulations with quality effects are richer in their distributional implications and show larger increases in economic surplus than the simulations with yield effects only.  相似文献   

11.
Environmental Science and Pollution Research - Toilet revolution is driven by the urgent need for solutions to improve sanitation and access to high-quality organic fertilizer for rural areas,...  相似文献   

12.
13.
Ground-level ozone in China: distribution and effects on crop yields   总被引:10,自引:0,他引:10  
Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China.  相似文献   

14.
Interest is growing in the use of by-product from flue gas desulfurization (FGD) to reclaim sodic soils by controlling the pH and excessive Na+. This study evaluated the effects on corn (Zea mays) production and pH and electrical conductivity (EC) of calcareous sodic soil during four times of cultivation when the by-product was applied once at the first cultivation (Study I) and the impacts on plant and soil quality at first cultivation when the by-product was applied to the soil at 23,000 kg ha-1 (Study II). In Study I, the germination rate and corn production increased by applying the by-product (0, 5,800, 11,600, and 23,100 kg ha-1), and the greatest total amounts of corn production during the four times of cultivation was when the by-product was applied at 23,100 kg ha-1. In Study II, the pH, exchangeable sodium percentage (ESP), clay dispersion and soluble Na+ in the soil decreased and soluble Mg2+ and soluble K+ in the soil increased. The soil pH was reduced from 9.0 to 7.7 by applying the by-product. However, the by-product decreased the concentrations of total N and P in corn leaves in this study. No significant difference in the concentrations of Mo, Zn, Pb, Ni, Cd, Mn, Cr, Cu, and Al in corn leaves and the soil was observed between the by-product addition and the control except for B in the soil and Fe in corn leaves. The concentration of B in the soil was reduced from 28.7 mg kg-1 to 25.4 mg kg-1 and the concentration of Fe in corn leaves increased from 17.5 mg kg-1 to 22.6 mg kg-1 by applying the by-product in our study.  相似文献   

15.
Environmental Science and Pollution Research - Climatic changes are posing serious threats to crop production and food insecurity across the globe. This study explores the dynamic relationship...  相似文献   

16.
Environmental Science and Pollution Research - Population growth has been a leading driver of global CO2 emissions over the last several decades. CO2 emission and greenhouse gas emissions are a key...  相似文献   

17.
Shin YJ  Kwak JI  An YJ 《Chemosphere》2012,88(4):524-529
Silver nanoparticles (AgNPs) are well known to have antimicrobial ability, but very little is known about the effect of AgNPs on soil exoenzyme activities, which reflect the potential of a soil to support biochemical processes. This study provides evidence of the inhibitory effects of AgNPs on the activities of soil exoenzymes. Six exoenzymes related to nutrient cycles (urease, acid phosphatase, arylsulfatase, β-glucosidase) and the overall microbial activity (dehydrogenase, fluorescein diacetate hydrolase) were tested in soils treated with AgNPs (1, 10, 100 and 1000 μg g(-1)) and silver ion (0.035, 0.175, 0.525, 1 and 1.5 μg g(-1)). AgNPs were capable of inhibiting the activities of all the exoenzymes tested in this study. Especially, the urease and dehydrogenase activities were significantly related to the presence of AgNPs. The effects of silver ions dissolved from the AgNPs were not significant, indicating the adverse effects caused by AgNPs themselves. This study suggested that AgNPs negatively affect soil exoenzyme activities, with the urease activity especially sensitive to AgNPs.  相似文献   

18.

Rapid increase in carbon dioxide emission triggers climate change, while climate change poses a threat to food security. On the other hand, emission increase as a result of agricultural production continues. Considering this cycle, it is thought that examining the relationship between agricultural production and carbon dioxide emissions can help countries take emission-reducing measures and develop policies to ensure food safety. With this thought, a common correlated effect estimator was used in this study to explain the relationship between crop and livestock production index and carbon dioxide emission of 184 countries with the use of data for the period of 1998–2014. Countries were classified under four categories: low-income countries, lower middle–income countries, upper middle–income countries and high-income countries. According to DCCE test results, it was reported that a 1% increase in crop production index had effect on CO2 emission only in lower middle–income countries. A 1% increase in livestock production index, on the other hand, was reported to increase CO2 emission rates by 0.28, 0.49, and 0.39 in lower middle–income, upper middle–income, and high-income countries, respectively. When evaluated in general, it could be stated that livestock breeding has a higher effect on CO2 emission in agricultural production. The findings of the present study revealed that countries need to improve agricultural production methods in ways to minimize the positive association between vegetative and livestock production in accordance with their level of development, to adopt more environment-friendly agricultural technologies and to endorse international environmental policies.

  相似文献   

19.
In China, vegetable croplands are characterized by intensive fertilization and cultivation, which produce significant nitrogenous gases to the atmosphere. In this study, nitric oxides (NOX) and nitrous oxide (N2O) emissions from the croplands cultivated with three typical vegetables had been measured in Yangtze River Delta of China from September 2 to December 16, 2006. The NO fluxes varied in the ranges of 1.6–182.4, 1.4–2901 and 0.5–487 ng Nm?2 s?1 with averages of 33.8 ± 44.2, 360 ± 590 and 76 ± 112 (mean ± SD) ngNm?2 s?1 for cabbage, garlic, and radish fields (n = 88), respectively. N2O fluxes from the three vegetable fields were found to occur in pulses and significantly promoted by tillage with average values of 5.8, 8.8, and 4.3 ng Nm?2 h?1 for cabbage, garlic, and radish crops, respectively. Influence of vegetables canopy on the NO emission was investigated and quantified. It was found that on cloudy days the canopy can only shield NO emission from croplands soil while on sunny days it cannot only prevent NO emission but also assimilate NO through the open leaves stomas. Multiple linear regression analysis indicated that soil temperature was the most important factor in controlling NO emission, followed by fertilizer amount and gravimetric soil water content. About 1.2%, 11.56% and 2.56% of applied fertilizers N were emitted as NO–N and N2O–N from the cabbage, garlic and radish plots, respectively.  相似文献   

20.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号