首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (beta-MnO2)-coated sand. We find that beta-MnO2 effectively oxidizes Cr(III) to Cr(VI) and that the extent of oxidation is sensitive to changes in pH, pore water velocity, and influent concentrations of Cr(III). Cr(III) oxidation rates, although initially high, decline well before the supply of beta-MnO2 is depleted, suggesting that a reaction product inhibits the conversion of Cr(III) to Cr(VI). Rate-limited reactions govern the weak adsorption of each chromium species, with Cr(III) adsorption varying directly with pH and Cr(VI) adsorption varying inversely with pH. The breakthrough data on chromium transport can be matched closely by calculations of a simple model that accounts for (1) advective-dispersive transport of Cr(III), Cr(VI), and dissolved oxygen, (2) first-order kinetics adsorption of the reduced and oxidized chromium species, and (3) nonlinear rate-limited oxidation of Cr(III) to Cr(VI). Our work supplements the limited database on the transport of redox-sensitive metals in porous media and provides a means for quantifying the coupled processes that contribute to this transport.  相似文献   

2.
Q1, an organochlorine component with the molecular formula C(9)H(3)Cl(7)N(2) and of unknown origin was recently identified in seal blubber samples from the Namibian coast (southwest of Africa) and the Antarctic. In these samples, Q1 was more abundant than PCBs and on the level of DDT residues. Furthermore, Q1 was more abundant in seals from the Antarctic than the Arctic. To prove this assumption, gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS), which is sensitive and selective for Q1, allowed for screening of traces of Q1 even in samples with particularly high levels of other organochlorine contaminants. Q1 was isolated by high-performance liquid chromatography (HPLC) from a skua liver sample. A 1:1 mixture with trans-nonachlor in electron-capture detectors (ECDs) was used to determine the relative response factor with ECNI-MS. The ECNI-MS response of Q1 turned out to be 4.5 times higher than that of trans-nonachlor in an ECD. With GC/ECNI-MS in the selected ion-monitoring mode, four Antarctic and four Arctic air samples were investigated for the presence of Q1. In the Antarctic air samples, Q1 levels ranged from 0.7 to 0.9 fg/m(3). In Arctic air samples, however, Q1 was below the detection limit (<0.06 fg/m(3) or 60 ag/m(3)). We also report on high Q1 levels in selected human milk samples (12-230 microg/kg lipid) and, therefore, suggested that the unknown Q1 is an environmental compound whose origin and distribution should be investigated in detail. Our data confirm that Q1 is a bioaccumulative natural organochlorine product. Detection of a highly chlorinated natural organochlorine compound in air and human milk is novel.  相似文献   

3.
The investigation of the photocatalytic oxidation (PCO) of multicomponent volatile organic compounds (VOCs) is very important to the application of PCO technology, because there is seldom a single VOC component in indoor air. In this paper, the characteristics of binary indoor VOCs, toluene and benzene, were experimentally studied using a mass transfer based method that we developed. The concentration ranges for toluene and benzene were 4.48-27.4 mg/m3 and 1.82-4.08 mg/m3, respectively. We found the following: (1) the PCO of each individual contaminant studied obeys the unimolecular form of the Langmuir-Hinshelwood (L-H) rate form; (2) the PCO of the binary contaminants follow the competitive adsorption L-H rate form; (3) the reaction-coefficient for PCO of individual contaminants differs from that in the competitive adsorption L-H rate form; and (4) the component impact factor of A to B, put forward in this paper, is a useful parameter describing the influence of A on the reaction coefficient of B, and it was found that the impact factor of toluene (a chemically active component) on benzene (a chemically stable component) is high, and the impact factor of benzene on toluene is low.  相似文献   

4.
Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind. Highlights ? Mining activities generated heavy metal pollution in fields around a Pb-Zn mine ? The elements from water and soils are strongly correlated ? Anglesite and cerussite are evidence of galena transformation into secondary minerals ? Particulate matter is an important transport carrier of pollution  相似文献   

5.
Asaluyeh is one of the most heavily industrialised areas in the world where gas, petrochemical, and many downstream industries are located. This study aims to survey the biomonitoring of four metals and one metalloid in children living in the vicinity of Asaluyeh area. To do this, we analysed the creatinine-adjusted urinary levels of arsenic (As), cadmium (Cd), vanadium (V), manganese (Mn), and nickel (Ni) in 184 elementary schoolchildren (99 boys and 85 girls) living in Asaluyeh and compared them with a reference population. The comparisons were done for two seasons (spring and fall). The results showed that in the case area (Asaluyeh), the levels of As, V, Mn, and Ni were significantly higher and that of Cd was not significantly higher than the reference city for both seasons. The mean concentration of metal(loid)s in Asaluyeh (case) and Sadabad (reference) area as μg g?1 creatinine was As 2.90 and 2.24, V 0.06 and 0.03, Mn 0.28 and 0.25, Ni 0.54 and 0.29, and Cd 0.31 and 0.28 in spring and As 3.08 and 2.28, V 0.07 and 0.03, Mn 0.30 and 0.26, Ni 0.91 and 0.30, and Cd 0.36 and 0.31 in the fall. Seasonal variations played a key role in determining urinary metal(loid) concentration, as we saw the significant level of As, Cd, V, and Ni in fall than in spring. With regard to the impact of gender on the absorption and accumulation of urinary metal(loid)s, boys showed higher levels of the studied elements, especially for As, than girls as outdoor activities are more popular among boys. Due to the values being lower than those reported in literature, more research is needed on various population groups and other exposure sources in order to judge whether living in the vicinity of the gas and petrochemical industries in Asaluyeh is a threat to nearby residents.  相似文献   

6.
Su C  Puls RW 《Chemosphere》2007,67(8):1653-1662
Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe(0)) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and autotrophic denitrification in the Fe(0) system. Questions arise as whether the more expensive Fe(0) is more effective than the less expensive carbonaceous solid materials for groundwater nitrate remediation, and whether there is any synergistic effect of mixing the two different types of materials. We carried out batch tests to study the nature and rates of removal of added nitrate in the suspensions of single, binary, and ternary systems of cotton burr compost, Peerless Fe(0), and a sediment low in organic carbon. Cotton burr compost acted as both organic carbon source and supporting material for the growth of indigenous denitrifiers. Batch tests showed that cotton burr compost alone removed added nitrate at a greater rate than did Peerless Fe(0) alone on an equal mass basis with a pseudo-first-order rate constant k=0.0830+/-0.0031 h(-1) for cotton burr compost and a k=0.00223+/-0.00022 h(-1) for Peerless Fe(0); cotton burr compost also removed added nitrate at a faster rate than did cotton burr compost mixed with Peerless Fe(0) and/or the sediment. Furthermore, there was no substantial accumulation of ammonium ions in the cotton burr compost system, in contrast to the systems containing Peerless Fe(0) in which ammonium ions persisted as major products of nitrate reduction. It is concluded that cotton burr compost alone may be used as an excellent denitrification medium in a PRB for groundwater nitrate removal. Further study is needed to evaluate performance of its field applications.  相似文献   

7.
Monthly variability of Cd, Hg, Zn, Mn and Al concentrations in mussels (Mytilus californianus) soft tissue and brown seaweed (Macrocystis pyrifera) was studied at a pristine rocky shore off San Quintin Bay, Baja California, México. The results were related to climatic and hydrographic conditions and to the physiological state of the mussels (condition index) by correlation analysis and principal component analysis (PCA). A "normalization" to account for the variability induced by the physiological state of the mussel was performed. The PCA was performed in two ways to relate the environmental variables and the condition index to: (1) the metal concentrations in mussels, and (2) the "normalized" mussel concentrations. The association of the variability of Cd with the upwelling season was revealed in both PCAs. The temporal variability of this metal in mussels was highly correlated to that in seaweed, suggesting that the dissolved phase determined the variability of Cd in mussels. However, for Hg, Zn, Mn and Al the results from both PCAs were different. The first PCA showed the relationship of these metals to pluvial precipitation and to the condition index. The PCA for the normalized mussel concentrations showed that, after eliminating the effect of the condition index, only Al was related to pluvial precipitation. Manganese, and to a less degree Zn, were related to these metals in seaweed. Because zinc is an essential element in mussels, some regulation of their internal concentrations is likely. Mercury was not detected in seaweed, but because of its reactive nature, it is not expected that the dissolved fraction could be a significant pathway; therefore, it can be concluded that its temporal variability was determined by the variability in the condition index only.  相似文献   

8.
Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (RL/S) increased with pH due to the flooded incubation. The RL/S for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles.  相似文献   

9.
Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and other organic micropollutants were determined in dated sediment/soil cores collected from the flood-plain of the river Elbe near Pevestorf (PT), approximately 125 km upstream of Hamburg, and Heuckenlock (HL) in southeast of Hamburg. Concentrations of PCDD/Fs peaked sharply at PT in the 1950s and at HL at the end of the 1940s. Cluster analyses provide evidence that the region of Bitterfeld-Wolfen (about 350-400 km upstream of Hamburg) could be the source of the PCDD/F contamination existing in the cores PT and HL since the 1940s. Obviously it is caused by sediments of the river Elbe of a similar composition. Whereas the PCDD/Fs, HCHs (hexacyclohexane isomers), DDX (DDT, DDD, DDE), and tetrachlorinated ethers in PT and HL presumably originated predominantly from the Bitterfeld-Wolfen region, organotin compounds in HL and dichlorinated haloethers in HL during the 1940s and 1950s can probably largely be attributed to emissions from the Hamburg region. Although they are separated by a large distance, in both sediment cores PT and HL concentrations and composition patterns of most organic micropollutants analyzed widely match. Inductively it can be concluded that similar contaminations will be found in many of the river bank soils between the Bitterfeld-Wolfen region and Hamburg. Excavation of top soils may uncover highly contaminated materials. Since the dated sediment cores show the variation in contaminants in the Elbe sediments over a defined time period, it is possible to make an approximate assessment of the actual degree of contamination to be expected in areas where in previous decades contaminated dredged sediments from the Elbe and from the Port of Hamburg have been deposited on land and used for building plots or for agricultural purposes.  相似文献   

10.
We measured mercury speciation in coastal rainwater samples from Monterey Bay, California in 2007–2008 to investigate the source of monomethylmercury (MMHg) in rainwater and determine the relative importance of wet atmospheric deposition of MMHg to coastal waters compared to other sources on the central Pacific coast. Total mercury (HgT) ranged from 10 to 88 pM, with a sample mean ± standard deviation of 33 ± 22 pM (volume-weighted average 29 pM). MMHg concentrations ranged from 0.12 to 2.3 pM with a sample mean of 0.7 ± 0.5 pM (volume-weighted average 0.68 pM). Reactive mercury (HgR) concentrations ranged from 0.87 to 47 pM, sample mean 7.8 ± 8.3 pM (volume-weighted average 6.1 pM). Acetate concentration in rainwater, measured in a subset of samples, ranged from 0.34 to 3.1 μM, and averaged 1.6 ± 0.9 μM (volume-weighted average 1.3 μM). Dimethylmercury (DMHg) concentrations were below the limit of detection in air (<0.01 ng m?3) and rainwater (<0.05 pM). Despite previous suggestions that DMHg in upwelled ocean waters is a potential source of MMHg in coastal rainwater, MMHg in rain was not related to coastal upwelling seasons or surface water DMHg concentrations. Instead, a multiple linear regression analysis demonstrated that MMHg concentrations were positively and significantly correlated (p = 0.002, adjusted R2 = 0.88) with those of acetate and HgR. These data appear to support previous suggestions that the aqueous phase methylation of Hg(II) by acetate may be the source of MMHg in rainwater, but imply that acetate concentrations in rainwater play a more important role relative to HgR than previously hypothesized. However, the calculated chemical speciation of Hg(II) in rainwater and the minimal predicted complexation of Hg(II) by acetate suggest that the aqueous phase methylation of Hg(II) by acetate is unlikely to account for the MMHg found in precipitation, or that the mechanism of this reaction in the atmosphere differs from that previously reported (Gardfeldt et al., 2003).  相似文献   

11.
van der Veen I  de Boer J 《Chemosphere》2012,88(10):1119-1153
Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and halogen containing PFRs. Most of the PFRs have a mechanism of action in the solid phase of burning materials (char formation), but some may also be active in the gas phase. Some PFRs are reactive FRs, which means they are chemically bound to a polymer, whereas others are additive and mixed into the polymer. The focus of this report is limited to the PFRs mentioned in the literature as potential substitutes for BFRs. The physico-chemical properties, applications and production volumes of PFRs are given. Non-halogenated PFRs are often used as plasticisers as well. Limited information is available on the occurrence of PFRs in the environment. For triphenyl phosphate (TPhP), tricresylphosphate (TCP), tris(2-chloroethyl)phosphate (TCEP), tris(chloropropyl)phosphate (TCPP), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and tetrekis(2-chlorethyl)dichloroisopentyldiphosphate (V6) a number of studies have been performed on their occurrence in air, water and sediment, but limited data were found on their occurrence in biota. Concentrations found for these PFRs in air were up to 47 μg m(-3), in sediment levels up to 24 mg kg(-1) were found, and in surface water concentrations up to 379 ng L(-1). In all these matrices TCPP was dominant. Concentrations found in dust were up to 67 mg kg(-1), with TDCPP being the dominant PFR. PFR concentrations reported were often higher than polybrominated diphenylether (PBDE) concentrations, and the human exposure due to PFR concentrations in indoor air appears to be higher than exposure due to PBDE concentrations in indoor air. Only the Cl-containing PFRs are carcinogenic. Other negative human health effects were found for Cl-containing PFRs as well as for TCP, which suggest that those PFRs would not be suitable alternatives for BFRs. TPhP, diphenylcresylphosphate (DCP) and TCP would not be suitable alternatives either, because they are considered to be toxic to (aquatic) organisms. Diethylphosphinic acid is, just like TCEP, considered to be very persistent. From an environmental perspective, resorcinol-bis(diphenylphosphate) (RDP), bisphenol-A diphenyl phosphate (BADP) and melamine polyphosphate, may be suitable good substitutes for BFRs. Information on PFR analysis in air, water and sediment is limited to TCEP, TCPP, TPhP, TCP and some other organophosphate esters. For air sampling passive samplers have been used as well as solid phase extraction (SPE) membranes, SPE cartridges, and solid phase micro-extraction (SPME). For extraction of PFRs from water SPE is recommended, because this method gives good recoveries (67-105%) and acceptable relative standard deviations (RSDs) (<20%), and offers the option of on-line coupling with a detection system. For the extraction of PFRs from sediment microwave-assisted extraction (MAE) is recommended. The recoveries (78-105%) and RSDs (3-8%) are good and the method is faster and requires less solvent compared to other methods. For the final instrumental analysis of PFRs, gas chromatography-flame photometric detection (GC-FPD), GC-nitrogen-phosphorus detection (NPD), GC-atomic emission detection (AED), GC-mass spectrometry (MS) as well as liquid chromatography (LC)-MS/MS and GC-Inductively-coupled plasma-MS (ICP-MS) are used. GC-ICP-MS is a promising method, because it provides much less complex chromatograms while offering the same recoveries and limits of detection (LOD) (instrumental LOD is 5-10 ng mL(-1)) compared to GC-NPD and GC-MS, which are frequently used methods for PFR analysis. GC-MS offers a higher selectivity than GC-NPD and the possibility of using isotopically labeled compounds for quantification.  相似文献   

12.
The carcinogenicity of 2,3,7,8-TCDD at multiple organ sites in animals has been well established by several cancer bioassays. Results of two of the most notable of these, the Kociba et al. (1978) rat feeding study and the National Toxicology Program (1980) gavage study in rats and mice showed hepatocellular carcinomas in two strains of female rats and male and female mice. Other tumor sites included carcinomas of the lung, tongue, hard palate and nasal turbinates, thyroid, and subcutaneous tissue. The evidence for carcinogenicity of 2,3,7,8-TCDD in animals is regarded as “sufficient” using the classification system of the International Agency for Research on Cancer (IARC).

Two Swedish epidemiologic case-control studies (Hardell and Sandstrom, 1979; Eriksson et al. 1979, 1981) reported a significant five- to sevenfold excess risk of soft-tissue sarcomas (STS) from occupational exposure to chlorinated phenoxyacetic acid herbicides and/or chlorophenols. Additionally, several small cohort studies collectively exhibited an unusual cluster of STS, significantly increased over combined expected incidence. Problems with these studies do not appear to be sufficient to discount this excess risk. The human evidence alone for the carcinogenicity of 2,3,7,8-TCDD is “inadequate” using the IARC classification. However, for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols, the human evidence is considered to be “limited.” The overall evidence for carcinogenicity considering both animal and human studies would place 2,3,7,8-TCDD alone in the IARC category 2B, meaning that the substance is probably carcinogenic in humans. The overall weight of evidence for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols is regarded as IARC category 2A, also meaning that they are probably carcinogenic for humans.

Using current EPA methodology for quantitatively estimating cancer risks, several animal data sets have been analyzed. Comparing the results, the upper-limit incremental unit risk estimate is 1.6 × 10−2 for a lifetime exposure of 1 ng/kg/day. This estimate is derived from a lifetime feeding study (Kociba et al., 1978) in which 2,3,7,8-TCDD induced tumors of the liver, lungs, hard palate, and nasal turbinates in female rats. Incremental unit cancer risks are also extrapolated for lifetime 2,3,7,8-TCDD exposures in water and air. Based on continuous lifetime exposure to 1 ng/L 2,3,7,8-TCDD in drinking water, the upper-limit estimate of extra cancer risk per individual is 4.5 × 10−3. For lifetime exposure to 1 pg 2,3,7,8-TCDD/m3 in the ambient air, the upper-limit individual risk is 3.3 × 10−5.  相似文献   


13.
Lack of access to adequate sanitation facilities has serious health implications for rural dwellers and can degrade the ecosystems. This study offers a systemantic and quantitative overview of historical data on rural domestic waste (RDW) production and past and current management practices in a prototype region in China, where rural areas are undergoing rapid urbanization and are confronted with great environmental challenges associated with poor RDW management practices. The results indicate that RDW is characterized with a large fraction of kitchen waste (42.9%) and high water content (53.4%). The RDW generation (RDWG) per capita between 2012 and 2020 is estimated to increase from 0.68 to 1.01 kg/d-cap. The Hill 1 model is able to adequately simulate/project the population growth in a rural area from 1993 to 2020. The annual RDWG in the region is estimated to double from 6,033,000 tons/year in 2008 to 12,030,000 tons/year by 2020. By comparing three RDW management scenarios based on the life-cycle inventory approach and cost–benefit analysis, it is strongly recommended that the present Scenario 2 (sanitary landfill treatment) be upgraded to Scenario 3 (source separation followed by composting and landfill of RDW) to significantly reduce the ecological footprint and to improve the cost-effectiveness and long-term sustainability.

Implications:?Rural domestic waste (RDW) is affecting 720 million people in China and more than 3221 million people worldwide. Consequently, handling and disposal of RDW have serious health implications to rural dwellers and the ecosystems. This study offers a systemantic and quantitative overview and analysis of historical data on RDW production and management practices in a prototype region in China, which is confronted with great environmental challenges associated with RDW. Then we predict future production of RDW and propose a sustainable RDW management strategy, which holds the promise of greatly mitigating the mounting environmental pressure associated with RDW and provides science-based guidance for decision makers and practitioners for assuring rapid yet “green” economic development.  相似文献   

14.
Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.  相似文献   

15.
Rhamnolipids produced by Pseudomonas aeruginosa have been proposed as soil washing agents for enhanced removal of metal and organic contaminants from soil. A potential limitation for the application of rhamnolipids is sorption by soil matrix components. The objective of this study is to empirically determine the contribution of representative soil constituents (clays, metal oxides, and organic matter) to sorption of the rhamnolipid form most efficient at metal complexation (monorhamnolipid). Sorption studies show that monorhamnolipid (R1) sorption is concentration dependent. At low R1 concentrations that are relevant for enhancing organic contaminant biodegradation, R1 sorption followed the order: hematite (Fe(2)O(3))>kaolinite>MnO(2) approximately illite approximately Ca-montmorillonite>gibbsite (Al(OH)(3))>humic acid-coated silica. At high R1 concentrations, relevant for use in complexation/removal of metals or organics, R1 sorption followed the order: illite>humic acid-coated silica>Ca-montmorillonite>hematite>MnO(2)>gibbsite approximately kaolinite. These results allowed prediction of R1 sorption by a series of six soils. Finally, a comparison of R1 and R2 (dirhamnolipid) shows that the R1 form sorbs more strongly alone than when in a mixture of both the R1 and R2 forms. The information presented can be used to estimate, on an individual soil basis, the extent of rhamnolipid sorption. This is important for determining: (1) whether rhamnolipid addition is a feasible remediation option and (2) the amount of rhamnolipid required to efficiently remove the contaminant.  相似文献   

16.
This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.  相似文献   

17.
An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects.  相似文献   

18.
Polychlorinated biphenyls (PCBs) were quantified in water, sediment, and catfish and crab tissue collected from the Houston Ship Channel (HSC) in Texas. The total concentrations of the 209 PCB congeners ranged from 0.49 to 12.49 ng l(-1), 4.18 to 4601 ng g(-1) dry wt, 4.13 to 1596 ng g(-1) wet wt, and 3.44 to 169 ng g(-1) wet wt, in water, sediment, catfish and crab tissue, respectively. All media showed maximum concentrations greater than studies in other regions with the highest concentrations occurring in the most industrialized segments of the channel. Inter-media correlations suggested that sediment is a source to water. Galveston Bay sediment concentrations compared to a previous study showed a declining trend though the rate of the decline may be slowing. Detailed homolog profiles revealed that the industrialized part of the channel may be receiving PCB-laden sediment from its tributaries. An unusually high fraction of the deca-chlorinated congener (PCB-209) was found in all media. Seen in only a few other studies and in previous air concentrations in the channel, this may point to unusual Aroclor mixtures used in the history of the HSC or to contemporary sources from local industry. A comparison of PCB concentrations obtained using Aroclor, representative congener, and all congener methods, indicated that Aroclors are not an appropriate surrogate for total PCBs and that the NOAA NST method is more representative than the NOAA EPA method.  相似文献   

19.
CO(2) enrichment is expected to alter leaf demand for nitrogen and phosphorus in plant species with C(3) carbon dioxide fixation pathway, thus possibly causing nutrient imbalances in the tissues and disturbance of distribution and redistribution patterns within the plants. To test the influence of CO(2) enrichment and elevated tropospheric ozone in combination with different nitrogen supply, spring wheat (Tritium aestivum L. cv. Minaret) was exposed to three levels of CO(2) (361, 523, and 639 microl litre(-1), 24 h mean from sowing to final harvest), two levels of ozone (28.4 and 51.3 nl litre(-1)) and two levels of nitrogen supply (150 and 270 kg ha(-1)) in a full-factorial design in open-top field chambers. Additional fertilization experiments (120, 210, and 330 kg N ha(-1)) were carried out at low and high CO(2) levels. Macronutrients (N, P, K, S, Ca, Mg) and three micronutrients (Mn, Fe, Zn) were analysed in samples obtained at three different developmental stages: beginning of shoot elongation, anthesis, and ripening. At each harvest, plant samples were separated into different organs (green and senescent leaves, stem sections, ears, grains). According to analyses of tissue concentrations at the beginning of shoot elongation, the plants were sufficiently equipped with nutrients. Elevated ozone levels neither affected tissue concentrations nor shoot uptake of the nutrients. CO(2) and nitrogen treatments affected nutrient uptake, distribution and redistribution in a complex manner. CO(2) enrichment increased nitrogen-use efficiency and caused a lower demand for nitrogen in green tissues which was reflected in a decrease of critical nitrogen concentrations, lower leaf nitrogen concentrations and lower nitrogen pools in the leaves. Since grain nitrogen uptake during grain filling depended completely on redistribution from vegetative pools in green tissues, grain nitrogen concentrations fell considerably with severe implications for grain quality. Ca, S, Mg and Zn in green tissues were influenced by CO(2) enrichment in a similar manner to nitrogen. Phosphorus concentrations in green tissues, on the other hand, were not, or only slightly, affected by elevated CO(2). In stems, 'dilution' of all nutrients except manganese was observed, caused by the huge accumulation of water soluble carbohydrates, mainly fructans, in these tissues under CO(2) enrichment. Whole shoot uptake was either remarkably increased (K, Mn, P, Mg), nearly unaffected (N, S, Fe, Zn) or decreased (Ca) under CO(2) enrichment. Thus, nutrient cycling in plant-soil systems is expected to be altered under CO(2) enrichment.  相似文献   

20.
Biogeochemical reductive dechlorination (BiRD) is a newly recognized method for the remediation or natural attenuation of chlorinated solvents. Chlorinated solvents are rapidly treated by abiotic reaction with reduced mineral iron sulfides. Iron sulfides are formed by naturally occurring sulfate-reducing bacteria when sufficient SO(4)(2-) and organic carbon are present or supplied to sediments containing mineral iron. An example of site characterization focusing on BiRD is presented focusing on mineral phases. Methods demonstrated here may be employed at other sites to evaluate naturally occurring BiRD or to evaluate an engineered BiRD remediation. A field investigation was performed at a TCE contaminated site at Altus AFB with naturally high concentrations of SO(4)(2-) and Fe(III) minerals and where an accidental fuel spill provided organic carbon. In the area of this fuel spill significant mineral iron sulfides were found, sulfate was almost completely removed, and TCE was absent. Only small amounts of daughter products were found, further indicating that the BiRD pathway was operative. Mass balance data indicates all of the remaining TCE (182 kg) could be treated by the remaining FeS (66.5 kg) in the upper aquifer; however, the FeS was not co-located with TCE to enable complete reaction. Laboratory microcosm tests with FeS amended and FeS-rich sediment from Altus AFB also suggest that BiRD is capable of destroying TCE. The results suggest that an engineered BiRD treatment is possible for this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号