首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
简易水处理活性炭的选择和应用方法   总被引:7,自引:11,他引:7  
首先介绍活性炭性能测试与水处理活性炭选炭、吸附技术选择、工艺应用的关系,其次报导两个活性炭选用方面的改进方法。通过重新定义、整合、完善现有活性炭性能指标,建立了以酚值、碘值、亚甲基蓝、丹宁酸值为吸附性能指标的选炭方法。这四种指标化合物的分子量与直径覆盖了大多数有机污染物的范围,用此法可减少活性炭应用测试的炭型。在活性炭精选和吸附工艺应用研究中,用微型炭柱进行穿透实验可弥补缩小式传统型、小型炭柱的不足。相对于国外现用微型柱的实验方法,文中介绍的微型柱快速穿透(MCRB)方法的设备要求较低,操作简单,可以在国内大多数实验室中进行;遇过对多种污染物质的实验结果,建立了MCRB方法的可信性和适用性。这两种新方法完善了活性炭水处理研究的实验体系,可降低其应用于水与污水处理的成本,有利于中国的环境保护。  相似文献   

2.
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.  相似文献   

3.
The detection and structural elucidation of micropollutants treatment by-products are major issues to estimate efficiencies of the processes employed for drinking water production versus endocrine disruptive compounds contamination. This issue was mainly investigated at the laboratory scale and in high concentration conditions. However, potential by-products generated after chlorination can be influenced by the dilution factor employed in real conditions. The present study proposes a new methodology borrowed to the metabolomic science, using liquid chromatography coupled to high-resolution mass spectrometry, in order to reveal potential chlorination by-products of ethinylestradiol in spiked real water samples at the part-per-billion level (5 μg L−1). Conventional targeted measurements first demonstrated that chlorination with sodium hypochlorite (0.8 mg L−1) led to removals of ethinylestradiol over 97%. Then, the developed differential global profiling approach permitted to reveal eight chlorination by-products of EE2, six of them being described for the first time. Among these eight halogenated compounds, five have been structurally identified, demonstrating the potential capabilities of this new methodology applied to environmental samples.  相似文献   

4.
Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.  相似文献   

5.
The concentrations of various organic pollutants (benzo(a)pyrene (BaP), hexachlorobenzene (HCB) and pentachlorophenol (PCP)) were determined in samples of water, sediment and biota (flounder, killifish, shrimp, crabs and squid) from San Luis Pass, Texas. Sediment was also analyzed for polychlorinated biphenyls (PCBs), phthalic acid esters (PAEs) and various pesticides. Only PCP was detectable in water. In sediment, the relative concentrations were PAEs > BaP > (PCBs HCB) > PCP. In biota, BaP was not detectable in any animal; HCB was highest in crabs and PCP was highest in all others (flounder, killifish, shrimp and squid). The relative concentrations of HCB and PCP were different in the different organisms. The differences between the relative concentrations in the biota and in sediment are discussed. The results of this study are compared to values measured at other sites. This study is part of a larger effort to identify and quantitate pollutants in various Texas estuaries and to serve as a basis for monitoring marine pollution.  相似文献   

6.
微波协同活性炭处理偶氮染料废水的研究   总被引:2,自引:1,他引:2  
以粉末活性炭为催化剂,采用微波协同活性炭工艺,对偶氮染料(酸性芷青GGR和酸性嫩黄G)废水进行处理。考察了活性炭用量、微波功率、辐射时间、偶氮染料初始浓度对2种偶氮染料去除率的影响。实验结果表明,酸性芷青GGR初始质量浓度为100mg/L、活性炭用量为12.5g/L、微波辐射时间为10min、微波功率为500W条件下,酸性芷青GGR的去除率可达90.28%;酸性嫩黄G初始质量浓度为100mg/L、活性炭用量为10.0g/L、微波辐射时间为8min、微波功率为500W条件下,酸性嫩黄G的去除率可达95.87%;微波协同活性炭处理2种偶氮染料的反应均呈现一级反应动力学特征。  相似文献   

7.
Environmental Science and Pollution Research - This work presents a bibliographic review of the literature regarding the simultaneous removal of contaminants of emerging concern (CECs) and...  相似文献   

8.
为了考察黑水/灰水中溶解性有机物(DOM)光谱特征在污水处理过程中的变化规律以及生物处理前后黑水/灰水中DOM特性上的异同,对污水处理过程中黑水/灰水DOM的紫外光谱及荧光光谱特征进行了测定分析。结果表明,黑水原水中DOM的含量远高于灰水,且含有较多难降解有机物。生物处理可实现对黑水与灰水中易降解DOM的有效去除,MBR系统中的膜分离过程也可以起到截留溶解性有机物的作用。经MBR处理后,同黑水出水相比,灰水出水中的DOM含量更低,且主要为饱和有机物,苯环C骨架的聚合程度较高,THMs生成活性更低。生物处理过程可有效去除黑水/灰水中蛋白质类物质与易降解腐殖质类物质。生物处理后,黑水与灰水的蛋白峰均消失,黑水出水类腐殖酸峰F荧光强度高于灰水出水。与黑水出水相比,灰水出水更适用作再生水加以回收利用。  相似文献   

9.
In the context of the high application potentials for on-line measurements in wastewater quality monitoring, UV spectroscopy has received recent attention. In the present work UV spectrophotometric analyses were coupled to principal component analysis (PCA) and cluster analysis (CA) to characterize samples taken from a fuel park wastewater treatment plant and to attempt preliminary contaminant identification in the treated wastewater. The score plot resulting from PCA identified two different groups of spectra, one including the influents to the biological reactor and the other the treated wastewater samples. Among the latter, weekday and weekend samples could be further distinguished. The same groups of samples were identified in a dendrogram from CA. The score plot and the dendrogram also allowed the tentative identification of employed process chemicals (lubricant and detergents) as residual contaminants in the treated effluent.  相似文献   

10.
Abstract

Activated carbons are well-known porous materials as an effective adsorbent used for the removal of emerging contaminants, such as herbicides, which are increasingly present in water bodies. Most water treatment plants, specially in Brazil, are unable to completely remove such contaminants by the conventional process and advanced treatment using activated carbons is required. The aim of this paper was to verify the influence of the activated carbons granulometry and specific surface area on the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide removal efficiency using distilled-deionized water and filtered water collected from a conventional Water Treatment Plant. Commercial activated carbons samples used in this work were obtained from two different manufacturers. Activated carbons were analyzed by the specific surface area, pore size and volume distribution, nuclear magnetic resonance, infrared and x-ray spectroscopy, moisture, volatile matter and ash contents. Batch adsorption isotherms experiments were used and performed by Langmuir and Freundlich models. Granular and powdered activated carbons removed over 99% of 2,4-D in distilled water and near to 99% using filtered water. The activated carbons evaluated in this work presented high performance and played a key role in water treatment by removing 2,4-D herbicide, ensuring the protection of human health and the ecosystem.  相似文献   

11.
Environmental Science and Pollution Research - Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of...  相似文献   

12.
Goal, Scope and Background Dissolved organic carbon (DOC) constitutes a parameter of organic pollution for waters and wastewaters, which is not so often studied, and it is not yet regulated by directives. The term ‘DOC’ is used for the fraction of organics that pass through a 0.45 μm pores’ size membrane. The type of wastewater plays an important role in the quality of DOC and it has been shown that DOC may contain aquatic humic substances, hydrophobic bases, hydrophobic neutrals, hydrophilic acids, hydrophilic bases and hydrophilic neutrals. The quality of the DOC is expected to affect its fate in a wastewater treatment plant (WWTP), since a considerable fraction of DOC is not biodegradable, and it may be released in the aquatic environment together with the treated effluent. In the present study, the occurrence of DOC during the wastewater treatment process is investigated and its removal rates during primary, secondary and overall treatment are being estimated. Furthermore, a correlation is being attempted between DOC and the concentrations of selected Persistent Organic Pollutants (POPs) and Heavy Metals (HMs) in the dissolved phase of wastewaters, to examine whether there are common sources for these pollution parameters in WWTPs. Also, DOC is being correlated with the partition coefficients of the above-mentioned pollutants in wastewater, in order to examine the effect of ‘solubility enhancement’ in WWTPs and to evaluate the result of this phenomenon in the efficiency of a WWTP to remove organic pollutants. Methods For the purposes of this study, 24-h composite wastewater samples were collected from the influent (raw wastewater, RW), the effluent of primary sedimentation tank (primary sedimentation effluent, PSE) and the effluent of secondary sedimentation tank (secondary sedimentation effluent, SSE). Samples were analyzed for the presence of 26 POPs (7 PCBs and 19 organochlorine pesticides), 8 HMs and DOC. Results and Discussion Mean concentrations of DOC in RW and PSE were at similar levels (∼ 70 mg l−1), suggesting that primary treatment has a minor effect on the DOC content of wastewater. DOC concentrations in SSE were significantly lower (∼ 19 mg l−1) as a result of the degradation of organic compounds in the biological reactor. Calculated removals of DOC were 0.8% in the primary treatment, 63% in the secondary treatment, and 69% in the overall treatment, exhibiting large differences from other organic pollution parameters, such as BOD and COD. The overall DOC removal was found to be independent from the DOC concentration in raw wastewater. Poor correlation was also observed between the DOC content and the concentrations of wastewater contaminants, such as persistent organic pollutants (POPs) and heavy metals (HMs), probably suggesting that their occurrence in WWTPs is due to different sources. A good negative linear relationship was revealed between DOC concentrations and the logarithms of the distribution coefficients (K d) of various POPs and HMs between the solid and the liquid phases of wastewater. This relationship suggests that DOC facilitates hydrophobic pollutants to remain in the dissolved phase thus causing lower removal percentages during the treatment process. Conclusion DOC was measured at three stages of a municipal WWTP that receives mainly domestic wastewater and urban runoff. DOC concentrations in untreated and primarily treated wastewater were almost equal, and only after the secondary sedimentation there was a decrease. Concentrations and removal rates of DOC were in the same levels as in other WWTPs that receive municipal wastewater. The origin of DOC was found to be different to the one of POPs and of HMs, as no correlation was observed between the concentrations of DOC and the concentrations of these pollutants. On the contrary, DOC was found to have significant negative correlation with the K d of all pollutants examined, suggesting that it plays an important role in the partitioning of those pollutants between the dissolved and the sorbed phase of wastewaters. This effect of DOC on partitioning can affect the ability of WWTPs to remove toxic pollutants, and that way it facilitates the discharge of those chemicals in the aquatic ecosystems together with the treated effluent. Recommendation By the results of this work it is shown that the presence of DOC in wastewaters can significantly affect the partition of hazardous pollutants between the dissolved and the sorbed phase. It is therefore of importance that this parameter is controlled more in wastewaters, since it can cause a decrease in the efficiency of WWTPs to remove quantitatively persistent pollutants.  相似文献   

13.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   

14.
Kristiana I  Joll C  Heitz A 《Chemosphere》2011,83(5):661-667
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.  相似文献   

15.
Environmental Science and Pollution Research - Parboiling rice mills produce a large amount of wastewater. The effluent from the rice mill contains high concentration of organic and inorganic...  相似文献   

16.
Al Nasir F  Batarseh MI 《Chemosphere》2008,72(8):1203-1214
The residues of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated benzenes (CBs) and phenols were investigated for soil, wastewater, groundwater and plants. The uptake concentration of these compounds was comparatively determined using various plant types: Zea mays L., Helianthus annus L., Capsicum annum L., Abelmoschus esculentus L., Solanum melongena L. and Lycopersicon esculentum L. which were grown in a pilot site established at Mutah University wastewater treatment plant, Jordan. Soil, wastewater, groundwater and various plant parts (roots, leaves and fruits) samples were extracted in duplicate, cleaned up by open-column chromatography and analyzed by a multi-residue analytical methods using gas chromatography equipped with either mass selective detector (GC/MS), electron capture detector (GC/ECD), or flame ionization detector (FID). Environmentally relevant concentrations of targeted compounds were detected for wastewater much higher than for groundwater. The overall distribution profiles of PAHs and PCBs appeared similar for groundwater and wastewater indicating common potential pollution sources. The concentrations of PAHs, PCBs and phenols for different soils ranged from 169.34 to 673.20 microg kg(-1), 0.04 to 73.86 microg kg(-1) and 73.83 to 8724.42 microg kg(-1), respectively. However, much lower concentrations were detected for reference soil. CBs were detected in very low concentrations. Furthermore, it was found that different plants have different uptake and translocation behavior. As a consequence, there are some difficulties in evaluating the translocation of PAHs, CBs, PCBs and phenols from soil-roots-plant system. The uptake concentrations of various compounds from soil, in which plants grown, were dependent on plant variety and plant part, and they showed different uptake concentrations. Among the different plant parts, roots were found to be the most contaminated and fruits the least contaminated.  相似文献   

17.
Borisover M  Sela M  Chefetz B 《Chemosphere》2011,82(10):1454-1460
Natural organic matter (NOM) in soils and sediments is recognized to strongly affect environmental distributions of organic compounds. Water associated with NOM may have a significant impact on NOM-organic compound interactions. The objectives of this research were (1) to determine the effect of hydration of a model NOM sorbent on interactions with a probe organic compound, carbamazepine (CBZ), and (2) based on the comparison with the literature data, to evaluate the effect of organic compound structure on the cooperative participation of water molecules in organic sorbate-NOM interactions. CBZ is one of the most widely reported water pollutants from the pharmaceutical and personal care products family. Therefore, CBZ sorption on Pahokee peat was compared from water and from n-hexadecane, using solubility-normalized solute concentrations. CBZ-NOM interactions were enhanced by one to two orders of magnitudes when NOM became fully hydrated. This enhancement is associated with the distinct ability of CBZ to undergo strong, specific interactions with NOM which was revealed by comparing the transfer of CBZ and another model sorbate, phenanthrene, from solution in n-hexadecane to the hydrated NOM sorbent. The enhancing effect of NOM hydration on CBZ-NOM interactions was also observed when CBZ sorption was examined on partially hydrated NOM. In comparison with a smaller-size organic sorbate such as phenol, CBZ needs more NOM-associated water in order to demonstrate the strengthening of interactions with NOM. Therefore, for penetration of the larger sorbate molecules into the NOM interior, a greater number of water molecules are needed to compensate for the local NOM disintegration thus suggesting the greater extent of the cooperativity in an involvement of water molecules in the CBZ-NOM interactions.  相似文献   

18.
Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation.  相似文献   

19.
Dissolved organic matter (DOM) in wastewater and reclaimed water is related to water quality, safety, and treatability. In this study, DOM was characterized through a fingerprint analysis method for DOM characterization using resin fractionation followed by size exclusion chromatography (SEC). Resin fractionation was used in the first step to divide the DOM in water samples into six resin fractions, namely, hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB), and hydrophilic neutrals (HIN). SEC analysis was then performed to separate each resin fraction into several (n) subfractions with different molecular weights (MW). Thus, the total DOM in the water sample was fractionated into 6n subfractions. After quantification of each subfraction by dissolved organic carbon (DOC), a fingerprint graph was constructed to express the distribution of DOM in the subfractions. The fingerprint analysis method was applied to a secondary effluent sample during ozonation. Ozonation (dose of 10 mg L?1) removed the DOC only by 8 % and reduced UV254 of the sample by 36 %. Fingerprint graphs also revealed that the resin fractions changed quite limitedly but transformation of subfractions occurred notably.  相似文献   

20.
The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号