首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过高温厌氧碳热还原方法制备出一种新型多孔生物质铁炭基功能材料,并详细分析了材料的结构和性质;考察了制备过程中的热解温度、pH和干扰离子等环境因子对镉吸附性能的影响,并揭示了铁炭基功能材料对镉的固定机制。结果表明,材料比表面积和孔容随热解温度升高而增加,在800 ℃材料中形成了纳米零价铁和碳化铁,制备出了具有磁性的铁炭基功能材料(MCFe-800),有利于材料的磁性回收。动力学实验结果表明,MCFe-800对水体镉的去除率明显高于其他热解温度,最大吸附容量归一化到铁为463.84 mg·g−1。在偏中性条件下更有利于对镉的去除。MCFe-800对镉的固定机制主要为静电吸附、共沉淀和表面络合。此外,经过4次循环实验后,MCFe-800对实际水体中镉的去除率仍为75.0%。滤柱实验结果表明,当镉初始质量浓度为1 000 μg·L−1和2 000 μg·L−1时,有效处理量分别为400 BV和270 BV。因此,新型多孔生物质铁炭基功能材料在水体镉污染修复方面具有很大应用潜力。  相似文献   

2.

Porous carbon is an excellent absorbent for pollutants in water. Here, we report a breakthrough in performance of porous carbon based on lignin prepared using sodium lignosulfonate (SLS), potassium carbonate and melamine as precursor, activator and nitrogen source, respectively. A series of characterization tests confirmed that in-situ nitrogen doping greatly enhanced porous structure, resulting in a specific surface area of 2567.9 m2 g?1 and total pore volume of 1.499 cm3 g?1, which is nearly twice that of non-nitrogen-doped porous carbon. Moreover, adsorption experiments revealed that at 303 K, the saturated adsorption capacity of chloramphenicol was as high as 713.7 mg g?1, corresponding to an improvement of 33.7%. Further, the prepared porous carbon exhibited a strong anti-interference against metal ions and humic acid. The adsorption process was confirmed to be an endothermic reaction dominated by physical adsorption, indicating that an increase in temperature is conducive to adsorption. The results of this study show that nitrogen-doped lignin-based porous carbon prepared by in-situ doping is a promising material to significantly alleviate water pollution owing to its low cost, excellent pore structure and good adsorption properties.

  相似文献   

3.
采用强酸表面氧化法对碳纳米管表面进行处理,促进碳纳米管在水中的分散,制备碳纳米管溶胶,用于去除水中低浓度持久性有机污染物异狄氏剂.扫描电镜观测表明,氧化后的碳纳米管团簇被分散开,碳纳米管被打断.碳纳米管溶胶对异狄氏剂的吸附性能研究表明,制备的碳纳米管溶胶对异狄氏剂吸附去除效能优于原始碳纳米管,优化的pH值为6,此时碳纳米管溶胶对18μg/L异狄氏剂去除率达到100%;水中的腐殖质提高了吸附去除效能;碳纳米管溶胶对异狄氏剂的吸附等温线呈线性,碳纳米管溶胶的吸附性能优于原始碳纳米管吸附性能.吸附去除后,溶胶态碳纳米管以0.05 mmol/L氯化铝从水中沉淀分离.  相似文献   

4.
A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5–10-nm outer diameter, surface area of 40–600 m2/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.  相似文献   

5.
以废次金银花叶渣为原料,采用原位掺铁法制备磁性活性炭(MAC)。运用BET、XRD和VSM分析技术表征MAC的物相结构及磁性能,考察投加量、温度、溶液pH值和时间对MAC吸附苯胺的影响,并解析MAC吸附苯胺的动力学和热力学机理。结果表明,原位掺铁法制备活性炭磁化物负载明显,其孔径为2.83 nm,比表面积为410.03 m2·g-1,饱和磁化强度为2.889 emu·g-1,表现出良好磁性能;当pH值为2、温度为40℃时,投加0.5 g MAC吸附初始浓度为200 mg·L-1的苯胺180 min后,苯胺降解率达到97.61%,溶液中苯胺质量浓度仅为4.79 mg·L-1;MAC对苯胺的吸附既有物理吸附,也有化学吸附,并满足Lagergren方程的准一级吸附动力学特征。  相似文献   

6.
Environmental Science and Pollution Research - Due to the merits of their high adsorption and convenient separation, magnetic graphene-based composites have become a promising adsorbent in terms of...  相似文献   

7.
Environmental Science and Pollution Research - Water pollution by emerging pollutants such as pharmaceutical and personal care products is one of today’s biggest challenges. The presence of...  相似文献   

8.
为解决水体中过剩四环素 (tetracycline, TC)与水硬度离子(Ca2+和Mg2+)等共存带来的复杂环境污染问题,采用分散聚合法将含氮单体聚合成手风琴状碳前驱体并将其碳化后,制备得到氮掺杂多孔碳材料 (nitrogen-doped porous carbon, NPC),采用电容去离子技术考察了NPC电极同步去除不同水体、pH、初始浓度中TC和水硬度离子的能力。结果表明:Langmuir,Freundlich和Temkin模型对NPC样品电吸附TC的吸附等温线分别进行拟合,发现电吸附过程包含了化学吸附、强静电吸附和物理吸附等机制,吸附过程较为复杂;NPC独特的手风琴状层次结构,使得TC的电吸附容量高达854.3 mg·g−1,是传统自吸附的2.4倍 (350.6 mg·g−1);稳定的层次结构与高导电碳网络结构,协同增强了NPC电极的吸附稳定性、再生性和循环稳定性,使其在自然水体中经过200次吸-脱附后吸附容量仍可保持在78%以上。由此可知,基于CDI技术的氮掺杂多孔碳电极能够有效地同步去除水体中的四环素和硬度离子。该研究结果可为复杂水体污染处理提供参考。  相似文献   

9.
Environmental Science and Pollution Research - Carbon nano-onions (CNOs) are fascinating zero-dimensional carbon materials owning distinct multi-shell architecture. Their physicochemical properties...  相似文献   

10.
Development of efficient techniques to combat the harmful effects of oil spill is an emerging field, where fabrication of new sorbents for selective removal of oil has become a hot topic for environmental scientists. The present study reports the preparation of superhydrophobic/oleophilic magnetic titania nanotubes via a facile hydrothermal method, followed by the treatment with octadecylamine, as potential magnetically driven sorbent for selective removal of oil from water surface. The magnetic nature (superparamagnetism at 300 K) of the nanotubes enabled magnetic removal of the oil-sorbed material from water surface. Wettability test of the material depicted a static water contact angle of 166 ± 1°, indicating its superhydrophobic character. Oil uptake experiments and contact angle measurements revealed its superoleophilicity with maximum oil sorption capacity >1.5 g/g for a variety of oils. In addition to the ease of magnetic removal, the nanotubes possess sufficient buoyancy, high selectivity, and quick rate of oil uptake and is more than five times reusable.  相似文献   

11.
Environmental Science and Pollution Research - Vanadium pentoxide can be an inexpensive replacement to vanadium sulfate in synthesizing vanadium redox flow battery (VRFB) electrolytes. In this...  相似文献   

12.
Environmental Science and Pollution Research - In the recent years, residual antibiotics are considered to be emerging environmental pollutants due to their continuous input and persistence into...  相似文献   

13.
Environmental Science and Pollution Research - In this study, corn stalk was modified by manganese (Mn) before (MBC1) and after (MBC2) pyrolysis at different temperatures (400~600 °C)...  相似文献   

14.

In this study, Chlorella vulgaris, Ganoderma lucidum, and endophytic bacteria were co-cultivated with the stimulation of strigolactone analogs GR24 to prepare pellets. During the purification of biogas slurry and biogas, multi-walled carbon nanotubes (MWCNTs) were introduced to enhance the removal efficiencies of nutrients and CO2. The results showed that both GR24 and MWCNTs affected the purification of biogas slurry and biogas. The maximum chemical oxygen demand, total nitrogen, total phosphorus, and CO2 removal efficiencies of the Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts were 82.57 ± 7.96% (P < 0.05), 82.14 ± 7.87% (P < 0.05), 84.27 ± 7.96% (P < 0.05), and 63.93 ± 6.22% (P < 0.05), respectively, with the induction of 10−9 M GR24 and 1 mg L−1 MWCNTs. Moreover, the growth and photosynthetic performance of the symbionts were consistent with the removal effects. The Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts obtained high growth rates and enzyme activity with the maximum growth rate of 0.365 ± 0.03 d−1, mean daily productivity of 0.182 ± 0.016 g L−1 d−1, and carbonic anhydrase activity of 31.07 ± 2.75 units, respectively. These results indicated that an appropriate concentration of GR24 and MWCNTs could promote the growth of symbionts, reinforce the purification effects of biogas slurry and biogas, and provide a new idea for the simultaneous purification of wastewater and biogas.

  相似文献   

15.
Environmental Science and Pollution Research - Triclosan (TCS) is widely used in the production of antibacterial products, being often found in wastewater. Therefore, this study developed new...  相似文献   

16.
The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock–Dechert–Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.  相似文献   

17.
采用液相化学沉淀法制备了易于回收的磁性碳纳米管催化剂,应用于催化湿式氧化实验处理垃圾转运站渗滤液。结果表明,在反应温度为200 ℃,n(COD)∶n(H2O2)=1∶1.8,时间为60 min,催化剂添加量为0.1 g·L−1的最佳条件下,垃圾渗滤液的COD去除率达到86.38%。出水可溶解性有机物(DOM)的紫外和三维荧光分析表明,实验对芳香族化合物和腐殖质的去除效果良好,可生化性提高。磁性碳纳米管在外加强磁场作用下30 s内便可实现快速分离,重复5次使用回收率可达90%。  相似文献   

18.

Ni-Co bimetallic catalysts supported on coconut shell activated carbon are synthesized using solid-phase method and investigated for dry reforming of methane, to explore the impact of Ni:Co ratio on the catalyst activity and stability. The catalyst performances are evaluated under the temperature varying from 600 to 900 °C and gas hourly space velocity (GHSV) of 7200 mL/h·g-cat. The characterization results show that metal nanoparticles are produced on the support, and the bimetallic catalyst with an explicit Ni:Co ratio (2:1) is the most beneficial for metal particle dispersion and acquires the minimum particle size of 4.41 nm. The bimetallic catalysts with an explicit Ni:Co ratio of 1:2 and 1:1 exhibit a synergistic effect towards the conversions of CH4 and CO2, respectively. The experimental results reveal that the highest CH4 and CO2 conversions rise to 94.0% and 97.5% within 12 h at 900 °C on average, respectively, assisted with the two bimetallic catalysts. The intensity of disordered carbon and thermal stability are enhanced with the extension of reforming process, contributing to a long-term catalytic stability. Besides, no obvious carbon deposition is detected, leading to a highly catalytic stability for the bimetallic catalysts.

  相似文献   

19.
Environmental Science and Pollution Research - Carbon aerogels are attracting much attention as adsorbents due to their high specific surface and large accessible pores. Herein, we describe a...  相似文献   

20.
Environmental Science and Pollution Research - The present study sought to determine the effects of multi-walled carbon nanotubes (MWCNTs) concentrations (0–10 mg L?1) on tetracycline...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号