首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = ? 3.91 kJ/mol and ? 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = ? 36.74 kJ/mol and ? 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.

  相似文献   

2.
稻壳活性炭对单质汞吸附性能的实验研究   总被引:1,自引:1,他引:1  
利用农业废弃物稻壳制得了一种廉价的脱汞活性炭。该活性炭由稻壳经炭化、FeCl3活化、酸洗水洗和干燥工艺制得。在固定床吸附条件下,对不同的活化剂浸渍液料比、活化剂质量分数、活化温度、活化时间下所制得的活性炭对单质汞的吸附性能进行了实验研究。结果表明,80℃下,该活性炭对单质汞的脱除效率于180 min内可平均达84.71%,且保持相对稳定。  相似文献   

3.
Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.  相似文献   

4.
氨氮废水的大量排放导致水体污染严重,如何寻求一种简单、高效的氨氮废水处理方法显得尤为重要。以泡沫混凝土作为氨氮吸附剂,通过静态吸附模拟氨氮废水实验,探索了不同建筑材料、吸附剂用量、pH值、温度和时间等因素对氨氮吸附效果的影响。实验结果表明,泡沫混凝土对氨氮有较好的吸附性能,在泡沫混凝土投加量为40.0 g·L-1、pH值为8.38、温度为25℃、时间为90 min时,对于质量-体积浓度为100 mg·L-1氨氮废水,氨氮的去除率达59.19%,吸附量为1.479 9 mg·g-1。等温吸附表明,泡沫混凝土对氨氮的吸附符合Freundlich等温方程,对氨氮的吸附属于良性吸附;动力学吸附实验结果与准二级动力学方程拟合更好,表明泡沫混凝土对氨氮的吸附符合准二级动力学。  相似文献   

5.
Environmental Science and Pollution Research - The huge demand and consumption of DOX, its incomplete metabolism, and complex behavior in atmosphere are causing a great ecological issue, which...  相似文献   

6.
Wong KK  Lee CK  Low KS  Haron MJ 《Chemosphere》2003,50(1):23-28
A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.  相似文献   

7.
Removal of arsenic(V) from aqueous solutions was evaluated with the following three different sorption materials: coal-based activated carbon 12 x 40 (activated carbon), iron(II) oxide (FeO)/activated carbon-H, and iron oxide. The apparent characteristics and physical chemistry performances of these adsorbents were investigated by X-ray diffraction, nitrogen adsorption, and scanning electronic microscope. Also, batch experiments for arsenic removal were performed, and the effects of pH value on arsenic(V) removal were studied. The results suggest that the main phases of the iron oxide surface are magnetite, maghemite, hematite, and goethite; fine and uniform iron oxide particles can cover activated carbon surfaces and affect the surface area or pore structures of activated carbon; adsorption kinetics obey a pseudo-first-order rate equation; and adsorption capacities of adsorbents are affected by the values of pH. The optimum value of pH for iron oxide lies in a narrow range between 4.0 and 5.5, and arsenic(V) removal by FeO/activated carbon-H is ideal and stable in the pH range 3 to 7, while activated carbon has the lowest adsorption capacity in the entire pH range. Also, the adsorption characteristics of FeO/activated carbon-H composites and virgin activated carbon match well the Langmuir adsorption model, while those of iron oxide fit well the Freundlich adsorption model.  相似文献   

8.
Preparation of activated carbon from sewage sludge is a promising way to dispose of sewage sludge as well as to produce a low-cost adsorbent for pollutant removal. This research work aimed to optimise the condition for activated carbon preparation from anaerobically digested sewage sludge with the additive coconut husk. The sewage sludge sample was mixed with the additive coconut husk. The preparation condition variables investigated involved the concentration of the ZnCl2 solutions, heating temperature, dwell time and heating rate in pyrolysis and the mixing ratio of coconut husk to sewage sludge. Surface area, pore size distribution, aqueous phenol adsorption capacity and the production yield of the final products were determined and compared. Experimental results revealed that low concentrations of ZnCl2 solution tended to improve the microporosity of the final product. Heating temperature had a considerable impact on the surface area, pore size distribution and phenol adsorption capacity of the final products, whereas dwell time and heating rate performed comparatively insignificantly. The effect of increasing the mixing ratio of coconut husk to sewage sludge was principally to increase the microporosity of the final products. The activated carbon with the highest BET surface area was produced with the activation of 5 M ZnCl2 solution and, thereafter, pyrolysis at a heating temperature of 500 degrees C for 2 h with a heating rate of 10 degrees C/min. The mixing ratio of 1:4 in terms of coconut husk to sewage sludge based on their dried weights was found to be most cost effective.  相似文献   

9.
以稻壳为原料,KOH为活化剂,分炭化和活化两步制备高表面积介孔活性炭。采用比表面积测定仪测定其N2吸附脱附等温线,采用扫描电子显微镜(SEM)、透射电子显微镜(HRTEM)、X射线衍射分析仪(XRD)对活性炭形成过程中的物相变化与显微结构进行了表征。结果表明,氮气保护下,稻壳在420℃温度下炭化4 h,再将KOH与炭化稻壳按质量比3∶1混合均匀后,在750℃活化1 h条件下制备的活性炭平均孔径可达4.54 nm,比表面积高达2 174.09 m2/g,介孔率达到78.57%。  相似文献   

10.
Tao Y  Wu CY  Mazyck DW 《Chemosphere》2006,65(1):35-42
Methanol is one of the major hazardous air pollutants emitted from chemical pulp mills. Its collection and treatment is required by the Maximum Achievable Control Technology portion of the 1998 Cluster Rule. The objective of this study is to investigate the technical feasibility of combined adsorption and photocatalytic regeneration for the removal and destruction of methanol. To facilitate the regeneration, activated carbon (AC) was coated with commercially available photocatalyst by a spray desiccation method. Laboratory-scale experiments were conducted in a fixed-bed reactor equipped with an 8 W black light UV lamp (peak wavelength at 365 nm) at the center. The photocatalyst loaded onto AC had no significant impact on the adsorption capacity of the carbon. High humidity was found to greatly reduce the material's capacity in the adsorption and simultaneous adsorption and photocatalytic oxidation of methanol. The photocatalytic regeneration process is limited by the desorption of the adsorbate. Increasing desorption rate by using purge air greatly increased the regeneration capacity. When the desorption rate was greater than the photocatalytic oxidation rate, however, part of the methanol was directly desorbed without degradation.  相似文献   

11.
Mexican rice hulls were pyrolysed in an inert atmosphere to form silicon carbide. The first step was a preheating process; the next step was the synthesis of silicon carbide, by using an extremely simple system of heating. Scanning electron microscopy, X-ray diffraction and differential thermal analysis were used to characterize the product. The type of SiC obtained was the so-called b-silicon carbide, in the form of fibres.  相似文献   

12.
Xu L  Guo J  Jin F  Zeng H 《Chemosphere》2006,62(5):823-826
Adsorption of SO(2) from the O(2)-containing flue gas by granular activated carbons (GACs) and activated carbon fibers (ACFs) impregnated with NH(3) was studied in this technical note. Experimental results showed that the ACFs were high-quality adsorbents due to their unique textural properties. In the presence of moisture, the desulphurization efficiency for the ACFs was improved significantly due to the formation of sulfuric acid. After NH(3) impregnation of ACF samples, nitrogen-containing functional groups (pyridyl C(5)H(4)N- and pyrrolyl C(4)H(4)N-) were detected on the sample surface by using an X-ray photoelectron spectrometer. These functional groups accounted for the enhanced SO(2) adsorption via chemisorption and/or catalytic oxidization.  相似文献   

13.
Due to concerns about ecotoxicological effects of pharmaceuticals and other micropollutants released from wastewater treatment plants, activated carbon adsorption is one of the few processes to effectively reduce the concentrations of micropollutants in wastewater. Although aimed mainly at apolar compounds, polar compounds are also simultaneously removed to a certain extent, which has rarely been studied before. In this study, adsorption isotherm and batch kinetic data were collected with two powdered activated carbons (PACs) to assess the removal of the polar pharmaceuticals 5-fluorouracil (5-Fu) and cytarabine (CytR) from ultrapure water and wastewater treatment plant effluent. At pH?7.8, single-solute adsorption isotherm data for the weak acid 5-Fu and the weak base CytR showed that their adsorption capacities were about 1 order of magnitude lower than those of the less polar endocrine disrupting chemicals bisphenol A (BPA) and 17-α-ethinylestradiol (EE2). To remove 90 % of the adsorbate from a single-solute solution 14, 18, 70, and 87 mg?L?1 of HOK Super is required for EE2, BPA, CytR, and 5-Fu, respectively. Effects of solution pH, ionic strength, temperature, and effluent organic matter (EfOM) on 5-Fu and CytR adsorption were evaluated for one PAC. Among the studied factors, the presence of EfOM had the highest effect, due to a strong competition on 5-Fu and CytR adsorption. Adsorption isotherm and kinetic data and their modeling with a homogeneous surface diffusion model showed that removal percentage in the presence of EfOM was independent on the initial concentration of the ionizable compounds 5-Fu and CytR. These results are similar to neutral organic compounds in the presence of natural organic matter. Overall, results showed that PAC doses sufficient to remove >90 % of apolar adsorbates were able to remove no more than 50 % of the polar adsorbates 5-Fu and CytR and that the contact time is a critical parameter.  相似文献   

14.
实验研究了活性炭纤维电极对敌草隆的去除作用。考察了电流强度以及敌草隆浓度对敌草隆去除的影响,对活性炭纤维用于吸附和用作电极去除敌草隆的效应进行了比较分析。结果表明,在0.01~0.05 A内,敌草隆的去除随着电流强度的增加而增加,其去除率为58%~91%。敌草隆浓度在5~40 mg/L时,其去除率随着浓度的增加而减小,但至1.5 h 时,去除率均可达95%以上。对于20 mg/L的敌草隆,活性炭纤维对其吸附去除率为90%左右,重复使用导致去除效率下降;活性炭纤维电极电化学氧化对其去除率达95%,并且重复使用其效果未见下降。活性炭纤维电极电化学氧化导致敌草隆分子结构破坏、苯环开环发生分解而最终得以去除。活性炭纤维电极可用于水中敌草隆的去除。  相似文献   

15.
研究了以A江水、B河水为原水的常规处理工艺和以C湖水为原水的两种深度处理工艺对有机污染物的去除效果.对水样的AOC、TOC和UV254进行了分析,结果表明,4个工艺对AOC的去除率分别是63.6%、-97.9% 、84.2%和94.7% ;对TOC的去除率分别是61%、6.6%、66.7%和75% ;对UV254的去除率分别是17.9%、25.6%、83.3%和95.1% ,与深度处理工艺相比,常规处理工艺不能保证饮用水的生物稳定性.  相似文献   

16.
研究以铁粉、活性炭和膨润土为原料,经筛选、预处理后进行实验室复合造粒,制备性能较佳的新型微电解材料用于重金属废水的治理。实验探索了各组分质量配比、焙烧温度、废水初始pH值、初始浓度等因素对材料性能的影响,并以SEM、EDS对制备的材料进行表征。研究结果表明,铁炭质量比为4:1,焙烧温度为400℃时制备的材料性能最佳,分析图谱结果显示,材料大部分表面疏松多孔,各成分紧密交织在一起,整体上铁粉和碳粉分布较均匀,没有发生铁粉聚集成大团现象,显示灰色,比表面积大,有较高的活性,平均密度为1.972 g/cm3。废水实验显示,该材料对含Ni2+ 20 mg/L的废水的去除率达96%,出水浓度0.8 mg/L,低于国家排放标准;对含Ni2+ 120 mg/L的废水去除率也可达85%以上,对含Ni2+废水的浓度适应性较广泛;控制废水的pH值在5~7之间,处理效率较好。  相似文献   

17.
廖伟  邹亮  陆少鸣 《环境工程学报》2012,6(4):1188-1192
针对从臭氧-活性炭工艺中开发出来的预臭氧-曝气生物活性炭,在不同气水比工况下进行实验,分析了不同气水比对曝气生物活性炭处理微污染原水的影响与作用。结果表明:在滤速为8~12 m/h,空床接触时间为11.5~15.4 min,装填密度为510 g/L条件下,不同气水比对去除氨氮的影响大于对CODMn的影响。气水比为0.3∶1时,对氨氮浓度为1.65~2.10 mg/L范围的进水平均去除率为81.9%,亚硝酸盐氮平均积累率为1.4%,CODMn去除率为70.6%。当气水比逐渐增加时,氨氮平均去除率有所提高,亚硝酸盐氮积累率则有所下降,对较低浓度的CODMn影响不大。  相似文献   

18.
煅烧高岭土(calcined kaolin, CK)是一种含量丰富且绿色环保的材料,因其具有催化活性高且活性位点较多的优点,故将其用以活化过一硫酸盐(peroxymonosulfate, PMS)以去除四环素(tetracycline, TC)。结果表明,CK活化PMS去除TC的过程包括吸附和催化降解。溶液初始pH=6、0.5 mmol·L−1投加量的PMS和0.2 g·L−1投加量的CK为CK活化PMS去除TC的最佳条件。Cl${\rm{NO}}_3^ - $${\rm{HCO}}_3^ - $的浓度在0~10 mmol·L−1时对CK活化PMS去除TC体系基本没有影响,而${{\rm{H}}_2}{\rm{PO}}_4^ - $对其体系有较大的抑制作用。自由基淬灭实验结果表明,HO·是CK活化PMS去除TC体系中的主要活性基团。通过液相-质谱联用仪检测出12种产物,阐述了4条可能的降解途径。以上结果表明,CK是一种极具潜力且含量丰富的绿色催化剂,其活化PMS后可应用于净化含有机污染物废水。  相似文献   

19.
采用溴化钾、碘化钾和硫磺对竹活性炭掺杂改性,利用电感耦合等离子体发射光谱仪测定滤液中汞离子浓度,用除汞效率和吸附容量评价活性炭对溶液中汞离子的吸附性能,探讨其吸附机理。结果表明,掺杂改性明显提高了竹活性炭的除汞性能。原竹活性炭的除汞效率为78.6%,吸附容量为2.210 mg/g;经碘化钾、溴化钾和硫磺掺杂改性后的竹活性炭除汞效率分别为94.3%、93.8%和88.8%,吸附容量分别为2.830、2.813和2.663 mg/g;经溴化钾(碘化钾)和硫磺联合改性的竹活性炭对水溶液中汞离子的吸附性能性能又有提高,其中以先载硫后载溴化钾的方法除汞效果最好,除汞效率达96.6%,吸附容量为2.898 mg/g。  相似文献   

20.
以椰壳活性炭为吸附剂进行了模拟水样中的N-DBP前体物——天冬氨酸的吸附去除实验,考察了吸附时间和溶液pH对吸附效果的影响,分析了吸附等温线、吸附动力学特征以及吸附热力学相关参数。实验结果表明,在不同的投加量下,椰壳活性炭对DON的吸附均在180 min时达到平衡;升高或降低水样的pH会使吸附量显著下降;椰壳活性炭对天冬氨酸的吸附过程符合准二级动力学方程和Langmuir方程(R2>0.99);膜扩散及内扩散阶段为吸附的控制阶段;在303 K的温度下,椰壳活性炭对天冬氨酸的最大吸附量为8.33 mg/g。对热力学结果的分析表明,该吸附反应是放热反应,在常温常压下不能自发反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号