首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Methods Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3°58'S, 79°5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results and Discussion Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5–4.4 kg N/ha year) and nitrate (0.5–0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the Ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/NorthEast during January–March (Colombia, Venezuela, Northern Brazil) and East/SouthEast during July–September (Peru, Brazil). Conclusion Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. Recommendation and Outlook The mountaineous rain forest in south Ecuador has developed on poor and acid soils, with low nutrient availability. The additional fertilization resulting from anthropogenic biomass burning constitutes a significant disturbance of this ecosystem, its functioning and biodiversity. Thus it is planned to employ isotope analyses for quantifying the pathways of nitrate and sulfate deposition in these natural forests.  相似文献   

2.
Agricultural production enhancement has been realized by more consumption of fossil energy such as fertilizer and agrochemicals. However, the production provides the present human with sufficient and diversified commodities, but at the same time, deprives in some extent the resources from the future human as well. In the other hand, it is known that synthetic herbicides face worldwide threats to human’s health and environment as well. Therefore, it is a great challenge for agricultural sustainable development. The current review has been focussed on various oilseed crop species which launch efficient allelopathic intervention, either with weeds or other crops. Crop allelopathic properties can make one species more persistent to a native species. Therefore, these crops are potentially harmful to both naturalized as well as agricultural settings. On the other side, allelopathic crops provide strong potential for the development of cultivars that are more highly weed suppressive in managed settings. It is possible to utilize companion plants that have no deleterious effect on neighbor crops and can be included in intercropping system, thus, a mean of contributing to agricultural sustainable development. In mixed culture, replacement method, wherein differing densities of a neighbor species are planted, has been used to study phytotoxic/competitive effects. So, to use alternative ways for weed suppression has become very crucial. Allelochemicals have the ability to create eco-friendly products for weed management, which is beneficial for agricultural sustainable development. Our present study assessed the potential of four oilseed crops for allelopathy on other crops and associated weeds.  相似文献   

3.
Environmental Science and Pollution Research - Gadfly petrels (Pterodroma spp.) are one of the most threatened and poorly studied seabird groups, and as marine predators, are exposed to...  相似文献   

4.
The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level.  相似文献   

5.
This research tested whether limnological conditions, biological characteristics of fish and anthropogenic impacts influenced the assimilation of methylmercury into the muscle of a sedentary piscivorous fish, Cichla spp., from three rivers (Negro, Madeira, Tapajós) and two hydroelectric reservoirs (Balbina, Tucuruí) within the Brazilian Amazon. Methylmercury in this fish ranged from 0.04 to 1.43microgg(-1) w.w. across sites. No significant differences were observed in the methylmercury concentrations between males and females, or for different morphotypes of this species. Positive correlations were found between methylmercury and fish body weight. No differences were found between the weight normalized methylmercury (MeHg) concentrations or its percent of total mercury in fish from the three rivers; weight normalized MeHg was highest in one of the two reservoirs. In Rio Tapajós, where gold mining and deforestation cause high water turbidity, fish showed the highest MeHg and concentrations were different across the four sites examined. In all sampling areas, the %MeHg was found to be higher than 70.  相似文献   

6.
ABSTRACT

The Cd, Cu, Pb and Zn contents in home-grown crops in a former mining district were determined in order to evaluate the non-carcinogenic long-term potential health risk related to crop consumption. The potential health risk was investigated by estimating the daily intake and the hazard quotients. For all crop categories, the daily intake and the target hazard quotient were below the threshold values for Cd, Cu, and Zn. The daily intake of Pb exceeded the oral reference dose, while the target hazard quotient for vegetables was above 1, indicating a potential health risk. The total target hazard quotient for the individual metals decreased in the following order: Pb>Cd>Cu>Zn. This study confirmed that the daily consumption of crops grown in contaminated soils could pose health risks to humans.  相似文献   

7.
Pollutant abatement systems are widely applied in the coal-fired power sector, and the energy consumption is considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000-MW coal-fired power unit that meets the ultra-low emission limits and the factors of operating parameters, including unit load and inlet concentration of pollutants, on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The wet flue gas desulfurization (WFGD) system consumed 67% of the rate, whereas the selective catalytic reduction (SCR) and electrostatic precipitator (ESP) systems consumed 8.9% and 24.1%, respectively. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of the WFGD system.

Implications: The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.  相似文献   


8.
Copper pollution in soils is widespread, and its accumulation in crop products could pose a risk on human health. In this paper, bioavailability of added copper (Cu) and critical Cu concentrations in a vegetable garden soil was evaluated for Chinese cabbage (Brassica chinensis L.), pakchoi (Brassica chinensis L.), and celery (Apiumg graveolens L. var. dulce DC) based on human dietary toxicity. The availability of added Cu in the soil decreased with incubation time, and had minimal change after 10-12 weeks. After incubated for 12 weeks, about 60% of added Cu was not extractable by DTPA. The same crops were also grown in sand culture to determine their responses to solution Cu. Shoot growth was significantly inhibited at Cu concentrations above 10 mg kg(-1) in the solution or above 150 mg kg(-1) (DTPA-Cu) in the soil. The sensitivity of the crops to Cu toxicity differed among the three vegetable crops. Copper concentration in shoots and edible parts varied with Cu supply levels and type of the vegetables. Negative correlations (r=-0.90-0.99**) were noted between Cu concentration in shoots and fresh matter yields, but Cu concentrations in the edible parts were positively correlated with available and total Cu in the soil (r=0.91-0.99**). The critical tissue Cu concentrations at 10% shoot DM reduction were 19.4, 5.5, 30.9 mg kg(-1) for Chinese cabbage, pakchoi, and celery, respectively. Based on the threshold of human dietary toxicity for Cu (10 mg kg(-1)), the critical concentrations of total and available Cu in the soil were 430 and 269 mg kg(-1) for pakchoi, 608 and 313 mg kg(-1) for celery, and 835 and 339 mg kg(-1) for Chinese cabbage, respectively.  相似文献   

9.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

10.
The selectivity of the herbicide flazasulfuron was evaluated when applied at two rates (50 and 100 g/ha) with and without surfactants (Aterbane or Agral at 0.2% v/v). The treatment was applied at early (three leaves) and late (five to six leaves) stages of the postemergence of sugarcane plants (var. RB845257) grown in two soils (sandy and clay) with good moisture status before and after application. Despite the toxicity symptoms, especially at the late stage with the higher rate of application in the sandy soil, the herbicide did not affect the growth nor the stalk yield. The presence of the surfactants had no effect on the toxicity symptoms.  相似文献   

11.
Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 μM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 μM) and a significant As accumulation (155 μg g−1 dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 μM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.  相似文献   

12.
Two methods for spiking terrestrial algae (Desmococcus spp., used as a foodstuff in bioassays with Collembola) with pyrene were tested; a "traditional" method that used a carrier solution of pyrene in acetone, and a solvent-free method developed using the principles of partition driven administration (PDA). The PDA method used a pre-spiked, highly-contaminated C18 disk as the source for pyrene, suspended and rotated in an aqueous algal suspension. The pyrene partitioned from the C18 disk into the aqueous phase, and a concentration of 18.4 +/- 0.7 microg pyrene g(-1)dwt. algae (mean +/- sd) was achieved after 18 h exposure by this method, with good reproducibility also observed for lower concentrations achieved over shorter exposure periods. The acetone-spiked algae lost much of its cell integrity and a significant amount of pigment, while cell integrity was maintained after 120 h spiking using the PDA method. Results from a short bioassay with Orchesella cincta (Collembola, Insecta) showed that animals fed acetone-spiked algae had slower growth rates and higher concentrations of pyrene metabolites than animals fed PDA-spiked algae. It is speculated that this was the result of the poor quality of the acetone-spiked food, and that the difference in food quality between treatments stimulated changes in body composition that may have affected the production of pyrene metabolites. The PDA spiking method is expected to be suitable for introducing a range of persistent organic pollutants into other types of sample matrix.  相似文献   

13.
The yields of eleven commercially grown soybean cultivars were compared in ethylenediurea (EDU)-treated and non-treated field plots in New Brunswick, New Jersey, over a 4 year period. No statistically significant difference between treatments was found for any cultivar; the inference being ambient ozone did not adversely affect soybean yield. Succeeding field experiments supported this interpretation of the data. 'Sanilac' white bean, a legume known to be more sensitive to O(3) than soybean, was found to produce a significantly greater yield in EDU-treated than non-treated plots, unlike a companion planting of 'Williams 82' soybean which did not exhibit the differential response. The results indicated that the specific EDU protocol used in the soybean experiments is capable of detecting an ozone effect in a legume. Moreover, in a concurrent greenhouse experiment the yield of EDU-treated Sanilac white bean was not significantly different from non-treated plants in the absence of ozone pollution. In a dose-response field experiment during a year of unusually high O(3) pollution, yield of 'Williams 82' increased slightly with each EDU increment up to 500 ppm and decreased at 1000 ppm. The difference between non-treated and EDU-treated plants, however, was not statistically significant. There was no evidence to suggest that the EDU concentration (500 ppm) used in previous soybean experiments reduced seed yield. Fortuitously, the tolerance of commercially-grown soybean to ambient ozone is at least partially conditioned by the practce of not irrigating the crop. The New Jersey results are in agreement with reports from Maryland, Georgia and Tennessee in which an adverse impact of ambient O(3) was not found in soybean, but contrary to a current predictive model.  相似文献   

14.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

15.
16.
The influence of atmospheric phenanthrene (PHE) exposure (160 μg m−3) during one month on carbon allocation in clover was investigated by integrative (plant growth analysis) and instantaneous 13CO2 pulse-labelling approaches. PHE exposure diminished plant growth parameters (relative growth rate and net assimilation rate) and disturbed photosynthesis (carbon assimilation rate and chlorophyll content), leading to a 25% decrease in clover biomass. The root-shoot ratio was significantly enhanced (from 0.32 to 0.44). Photosynthates were identically allocated to leaves while less allocated to stems and roots. PHE exposure had a significant overall effect on the 13C partitioning among clover organs as more carbon was retained in leaves at the expense of roots and stems. The findings indicate that PHE decreases root exudation or transfer to symbionts and in leaves, retains carbon in a non-structural form diverting photosynthates away from growth and respiration (emergence of an additional C loss process).  相似文献   

17.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

18.
The objective of this study is to compare the use of several indices of exposure in describing the relationship between O3 and reduction in agricultural crop yield. No attempt has been made to determine which exposure-response models best fit the data sets examined. Hourly mean O3 concentration data, based on two-three measurements per hour, were used to develop indices of exposure from soybean and winter wheat experiments conducted in open-top chambers at the Boyce Thompson Institute, Ithaca, New York NCLAN field site. The comparative efficacy of cumulative indices (i.e. number of occurrences equal to or above specific hourly mean concentrations, sum of all hourly mean concentrations equal to or above a selected level, and the weighted sum of all hourly mean concentrations) and means calculated over an experimental period to describe the relationship between exposure to O3 and reductions in the yield of agricultural crops was evaluated. None of the exposure indices consistently provided a best fit with the Weibull and linear models tested. The selection of the model appears to be important in determining the indices that best describe the relationship between exposure and response. The focus of selecting a model should be on fitting the data points as well as on adequately describing biological responses. The investigator should be careful to couple the model with data points derived from indices relevant to the length of exposure. While we have used a small number of data sets, our analysis indicates that exposure indices that weight peak concentrations differently than lower concentrations of an exposure regime can be used in the development of exposure-response functions. Because such indices may have merit from a regulatory perspective, we recommend that additional data sets be used in further analyses to explore the biological rationale for various indices of exposure and their use in exposure-response functions.  相似文献   

19.
Environmental Science and Pollution Research - In the current century, the G7 countries have attached more importance to energy security, and have prioritized low-carbon sources which have...  相似文献   

20.
Potato (Solanum tuberosum cv. Bintje) was grown in open-top chambers under three carbon dioxide (ambient and seasonal mean concentrations of 550 and 680 mumol mol-1 CO2) and two ozone concentrations (ambient and an 8 h day-1 seasonal mean of 50 nmol mol-1 O3) between emergence and final harvest. Periodic non-destructive measurements were made and destructive harvests were carried out at three key developmental stages (24, 49 and 101 days after emergence) to establish effects on growth and tuber yield. Season-long exposure to elevated O3 reduced above-ground dry weight at final harvest by 8.4% (P < 0.05), but did not affect tuber yields. There was no significant interaction between CO2 and O3 for any of the growth and yield variables examined. Non-destructive analyses revealed no significant effect of elevated CO2 on plant height, leaf number or green leaf area ratio. However, destructive harvests at tuber initiation and 500 degrees Cd after emergence showed that above-ground dry weight (8 and 7% respectively) and tuber yield (88 and 44%) were significantly increased (P < 0.05) in the 550 mumol mol-1 CO2 treatment. Responses to 550 and 680 mumol mol-1 CO2 were not significantly different for most parameters examined, suggesting the existence of an upper limit to the beneficial influence of CO2 enrichment. Significant effects on above-ground dry weight and tuber yield were no longer apparent at final harvest, although tuber numbers were increased (P < 0.05) under elevated CO2, particularly in the smaller size categories. The results show that the O3 treatment imposed was insufficient to reduce tuber yields and that, although elevated CO2 enhanced crop growth during the early stages of the season, this beneficial effect was not sustained to maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号